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Upstream Contributions to the Sub-seasonal Variability and Predictability of the North Pacific Storm
Track
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The relationship between the sub-seasonal variability of the North Pacific storm-track activity and upstream
atmospheric conditions during the 2023/24 cold season is examined. Composite analyses reveal that active phases
of the storm track are characterized by enhanced eddy energy propagation from the upstream Eurasian continent and
a northward shift of the upper-tropospheric jet stream over the North Pacific. The transition processes exhibit a
distinct asymmetry: the transition from suppressed to active phases is preceded by intensified upstream eddy energy
propagation, whereas the reverse transition is preceded by a southward shift of the jet stream over the North Pacific.
These results suggest that upstream conditions contribute to both the initiation and maintenance of enhanced storm-

track activity. We also discuss the relationship between the prediction skill of storm-track activity in a seasonal

forecast model and the identified upstream conditions.
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Fig. 1: 20-40-day bandpass-filtered time series of the
North Pacific storm-track activity.
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Fig. 2: Differences in available potential energy
conversion from background to eddy (shading) and
eddy energy flux (vectors) between active and

suppressed phases.
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Fig. 3: Available potential energy conversion (shading)
and zonal eddy energy flux (vectors) averaged over
35°N—70°N around the transition from suppressed
to active phases. Values are shown as deviations

from the period average.
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