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Integrating Deep Learning into a Hybrid Image-Based Velocimetry Framework for Flood Flow
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This study evaluates the feasibility of applying the
deep learning-based optical flow model SEA-RAFT to
natural rivers during flood periods. By integrating
image preprocessing techniques with Large-Scale
Particle Image Velocimetry (LSPIV) and Space-Time
Image Velocimetry (STIV), we propose a hybrid
framework for estimating river surface velocity and
discharge.

We selected the Naka River in Tokushima, Japan,
and the Zengwen River in Taiwan as the study sites.
PTZ cameras were installed on bridges to
continuously monitor river flows. Video frames were
orthorectified using ground control points (GCPs).
The orthorectified frames were then enhanced in
ImageJ software to improve brightness and contrast
for clearer flow pattern visualization, and to increase
sharpness in order to strengthen the visibility of
natural tracers, particularly in low flow regions. The
enhanced frames were finally masked to define the
region of interest (ROI) for subsequent velocity
estimation.

In the surface velocity estimation stage, we
analyzed the flow fields using LSPIV and three
SEA-RAFT optical flow models constructed with
different sets of pretrained weights (large, medium,
and small). In the absence of reliable in situ surface
velocity measurements during flood periods, we used
LSPIV as a surrogate reference and evaluated the
discrepancies between the two approaches. The results
show that the estimated velocity magnitudes are
highly consistent (Fig. 1). The Bland-Altman analysis
further indicates a bias of 0.206 m/s, suggesting that

SEA-RAFT  slightly  overestimates  velocities
compared with LSPIV. Notably,
between the two methods

velocities, which indirectly implies that SEA-RAFT

the agreement

improves at higher

may offer an advantage in capturing natural tracers in

low-velocity regions (Fig. 2).
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Fig. 1 Spatial map of surface velocity magnitude
differences between SEA-RAFT(L) and LSPIV (Naka
River, 29 Aug 2024, 12:00).
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Fig. 2 Bland-Altman plot of surface velocity
magnitude between SEA-RAFT(L) and LSPIV for the
Naka River case (29 Aug 2024, 12:00).



Furthermore, given the absence of ground truth
measurements, the absolute accuracy of the two
methods cannot be directly quantified. Instead, we
evaluated their temporal stability using the coefficient
of variation (CV). The analysis was conducted for
three spatial categories: the entire domain, the
mainstream region (top 10% highest velocities), and
the near-bank zone (within 4 m from the riverbank).
Results show that SEA-RAFT exhibits a lower median
CV of velocity magnitude within the ROI (Fig. 3).
This indicates that SEA-RAFT provides more
temporally stable velocity estimates than LSPIV

across consecutive frames.
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Fig. 3 CV distribution of surface velocity magnitude
for SEA-RAFT(L) and LSPIV (Naka River, 29 Aug
2024, 12:00).

For discharge estimation, since both SEA-RAFT
and LSPIV showed a tendency to underestimate
surface velocities in low-velocity regions, we used
surface velocity estimates from STIV as the primary
input, as STIV is relatively less dependent on natural
tracers. Discharge was then computed using a velocity
index (o)), which represents the ratio between surface
velocity and depth-averaged velocity.

To investigate the plausible distribution of a at the
study sites, the cross section was divided into five
zones based on relative submergence, turbulence
structure, cross-sectional geometry, and the spatial
distribution of velocity. We then applied the proposed
importance sampling—based Bayesian workflow as a
stochastic approach to obtain the posterior distribution
of a for each zone (Fig. 4) and the probabilistic
distribution of the total discharge Q. Finally, the
estimated discharge was compared with the upstream
and the

dam release, results showed that the

estimation biases was within 10% (Fig. 5).

Posterior of velocity index a (N = 600,000)
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Fig. 4 Posterior median and 95% credible interval (CI)
of the velocity index (a) for each zone, estimated

using all observations at the Naka River site.
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Fig. 5 Percentage bias of the estimated discharge

relative to upstream dam release records under two

estimation strategies at the Naka River site.

In conclusion, during flood periods, SEA-RAFT
demonstrated strong agreement with LSPIV for
surface velocity estimation while providing higher
resolution flow field and improved temporal stability.
Furthermore, the

proposed importance

sampling-based Bayesian workflow offers a
stochastic approach to explore the velocity index (a)
for converting surface velocity to depth-averaged
velocity. Overall, this study presents an integrated
framework ranging from image enhancement and
surface velocity estimation to discharge computation,
supporting robust and nonintrusive flood flow analysis

in natural streams.



