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Morphology and Horizontal grid spacing of quasi-linear convective systems
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This study aims to investigate differences between two cases in the dominant convective scales of quasi-linear

convective systems and in the model resolution required to represent them appropriately. Two QLCSs in Kansai

region were simulated in multiple resolutions. One case corresponded to back building (BB) type, whereas another

case corresponded to back and side building (BSB) type. In the BSB case, smaller convection consisted of the rainfall

area than in the BB case. This difference was derived from the presence of large-scale convergence associated with

strong horizontal shear, which was absent in the BSB case. These results indicate that the dominant spatial scales of

convection are larger in the BB case and smaller in the BSB case, and that higher model resolution is required to

adequately represent convection in BSB type QLCSs compared to BB type systems.
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