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同調型回転慣性質量ダンパの定点理論と極配置法に基づく拘束条件の統合 
An Integration of a Parameter Constraint Based on Pole Allocation and the Fixed-Point Theory 

for Tuned Rotational Inertial Mass Damper 
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Yoshiki IKEDA 

 

To directly predict the control effectiveness of a Tuned Rotational Inertial Mass Damper (TRIMD), this study 

integrates the fixed-point theory with a parameter constraint equation derived from the pole allocation method. The 

structural system is modeled as a two-degree-of-freedom lumped-mass system, and the constraint is formulated 

similarly to those used in tuned mass dampers, joint dampers and viscous dampers. The constraint considers the 

additional damping ratio to a single-degree-of-freedom structure, and incorporates the optimal damper parameters 

through the fixed-point theory. Consequently, the study extends the concept of parameter constraints to the 

TRIMD. 

 

１．はじめに 

同調型回転慣性質量ダンパ（TRIMD）は，ボー

ルねじ機構により錘を回転させ，錘の実質量の数

千倍以上にもなる慣性質量を得るパッシブ制御装

置である．錘の直線運動を高速の回転運動に変換

して，大きな制御力を建物に作用させることがで

きる．大きな慣性質量を得るために円筒形の外筒

を回転させ，減衰効果を生み出すために外筒と固

定した内筒の間に粘性体を入れた TRIMD には，

ダンパを表現する複数のパラメータに定点理論に

基づく最適値が存在する 1)．その最適値を，パッ

シブ制御を統一表現する拘束条件 2)-4)に組み込む

と，建物に与える付加減衰比を定点理論から直接

予測する式が誘導できる． 
 
２．極配置に基づく拘束条件式 

図 1 は，1 質点 1 自由度系建物に TRIDM を設置

した解析モデルである．建物の質量を m，その剛

性を k，減衰係数を c，ダンパの回転慣性に対する

等価質量を Dm ，ダンパ接合部の剛性を Dk ，ダン

パのダッシュポットの減衰係数を Dc とおく．建物

の固定端に対する建物の変位を x，ダンパのダッ

シュポット自体の変位を Dx ，地動加速度を y とす

る．この時，運動方程式は次式で表現される． 
 ymPkxxcxm    (1) 
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建物の非減衰固有円振動数 mk /0  ，建物自体

の減衰比 )2/( 00 mch  ，建物の質量に対するダン

パの等価質量の比 mmD / ，ダンパの非減衰固 

 
 
 
 
 
 
 
 
 
図 1 TRIMD を有する 2 質点 2 自由度系モデル 

 

有円振動数 DDD mk / ，ダンパ自体の減衰比

)2/( 0mch DD  を導入して，状態方程式を導く． 
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固有値を sとおくと，上式に対応する特性方程

式は次の 4 次式として得られる． 
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このモデルは 2 つの固有モードをもつから，i 次モ

ードで指定する固有円振動数と減衰比をそれぞれ



iと ih おくと，特性方程式は次式でも表現できる． 
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特性方程式(4)と(5)が一致する条件から，s の 1

次の項と定数項を取り出す． 
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式(6)を式(7)で除すと，拘束条件式(8)が得られる． 
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この左辺は，1 質点系 Maxwell モデルで誘導した

パラメータ拘束条件と同じである 4)．これは，拘

束条件が慣性質量に関係しないことを意味する． 
 
３．拘束条件式と定点理論の統合 

0に対する加振円振動数の比を )/( 0  ，

ダンパ自体の固有振動数の比を )/( 0 D ，ダン

パの緩和時間を )/( DD kc ，対応する無次元緩和

時間を  とおくと，以下の関係がある． 
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非減衰建物を仮定し，地動加速度と建物変位の振

幅をそれぞれ A と X とおくと，地動加速度に対す

る建物変位の周波数伝達関数は 
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となる．2 つの定点 P と Q で伝達関数の高さを同

じにする条件から 
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が得られ，その高さは次式になる 1)． 
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最適な無次元緩和時間とダンパの減衰比 
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と，対応する最適な剛性比(14)も得られている 1)． 
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1と 2は，伝達関数が極大値となる定点の加振

円振動数 P と Q を意味する．統一式を定点理論

と整合させるために 0c とし，2 つの振動モード

の目標付加減衰比を 21 hhh  とおくと，式(8)は 
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となる．式(15)の右辺に 
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を代入し，左辺の Dc と Dk を定点理論から得られる

最適値で表現すると，目標付加減衰比(17)が得ら

れる．分母の 2 項を Taylor 展開して 1 次の項まで

考慮すると，その近似式となる． 
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 図 2 は，横軸を質量比  にして，定点理論によ

るダンパの減衰比 optDh , ，最適な剛性比 kk optD /, お

よび付加減衰比hを示している． 

 

 
図 2 質量比 μ，最適なダンパ減衰比 hD, opt と剛性 

比 kD, opt/k および付加減衰比 h の関係 
 
４．まとめ 

TRIMD の定点理論を，パッシブ制振を統一表現

する拘束条件に組み込むことで，建物に与える付

加減衰の予測式を誘導した．この式は，ダンパ自

体の最適パラメータのみを与える定点理論に，制

御効果を予測する利便性を与えている． 
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