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Estimation of a strain-rate field in southeastern Tibet
by joint inversion of GNSS and InSAR data using basis function expansion
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Accurate estimation of strain-rate fields from geodetic data is essential for understanding crustal activity. However,
the low spatial density of GNSS observation networks often leads to the estimation of an oversmoothed strain-rate
field, neglecting localized deformation. To overcome this problem, we develop a new estimation method by jointly
inverting GNSS and InSAR data using basis function expansion. We apply this method to southeastern Tibet, an
active tectonic zone strongly influenced by the ongoing collision between the Indian and Eurasian plates and
characterized by numerous faults, including the left-lateral strike-slip Xianshuihe Fault. The estimated strain-rate
field reveals remarkable localization of deformation along the Xianshuihe Fault. The peak value of the maximum
shear strain rate exceeds 300 X 1079 strain/yr, which is more than three times larger than that estimated from the

GNSS data only. This result suggests the importance of integrating spatially dense InSAR observations with GNSS

data to better resolve localized deformation in active tectonic zones.
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Fig. 1: Results of the joint inversion of GNSS and
InSAR data. Top: Eastward (left) and northward (right)
velocities. Bottom: Maximum shear strain rates (left)
and principal axes of strain rates (right). Red and blue
bars represent extensional and contractive strain rates,

respectively. Gray lines show active faults.
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Fig. 2: Profiles of the estimated maximum shear strain
rates. Results of the joint inversion of GNSS and InSAR
data (red) and the inversion of GNSS data only (blue)
are presented. The locations of the profiles C1-C2 and
X1-X2 are shown by the black solid lines in Fig. 1. L,
D, and K stand for Luhuo, Daofu, and Kangding,

respectively, whose locations are also shown in Fig. 1.



