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Introduction 

Submarine slope instability involves many factors 

and not all failure mechanisms are fully understood. 

Therefore, a probabilistic method that consider the 

spatial variability of soil strength was proposed in this 

study to evaluate the stability of submarine slopes 

while considering uncertainties. In this study, the 

spatial variability of the sediments strength is 

described by means of stationary and non-stationary 

random fields (RFs) using the Karhunen-Loève (K-L) 

expansion. The limit equilibrium method (LEM) along 

with RFs is used to evaluate the stability of the 

submarine slope. Then the failure probability of the 

submarine slope is effectively obtained from Monte 

Carlo simulation (MCS) with a novel Gaussian 

process regression (GPR)-based surrogate model. 

Random fields simulation 

In nature, soil properties vary from point to point 

over space as the result of geologic processes. It is 

commonly recognized that marine sediments possess 

inherent spatial variability. Within the framework of 

RFs, the 2-D Gaussian autocorrelation function used 

in this study is expressed as: 
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The K-L expansion of an RF is a series-expansion 

method based on the spectral decomposition of its 

autocorrelation function. In most cases, soil shear 

strength is simulated with a stationary RF, which 

means that the average value and standard deviation 

(SD) of the shear strength are constant with depth. The 

stationary Gaussian RF with mean μ, SD σ can be 

expressed by the truncated K-L expansion as 
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The non-Gaussian RFs and non-stationary RFs can be 

transformed from stationary Gaussian RFs. One 

simulation of the one-D RFs including stationary and 

non-stationary used in this study is shown in Fig. 1. 

 

Fig. 1. Simulation of undrained shear strength of 

marine sediments using three types of one-D RFs. 

GPR-based surrogate model 

The Gaussian process method is one of the most 

advantageous tools among Bayesian methods. The 

training set including a multi-dimensional input vector 

xi and the corresponding output yi. The GPR algorithm 

obtains the relationship between the input and output 

of the training database, whereupon the distribution of 

the predictive function values f*(xi) is provided. Then 

the predicted output y* can be obtained with high 

accuracy given a new input x*. A schematic of GPR is 

shown in Fig. 2. With the mean function M(x) and 

Kernel function K(x, x'), a Gaussian process function 

f(x) can be specified completely as: 
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After the GPR-based surrogate model has been built, 



it was used in the MCS to reduce the number of calls 

for direct analysis. 

 

Fig. 2. Schematic of Gaussian process regression. 

Reliability analysis of submarine slopes 

A flowchart for both 1-D and 2-D reliability 

analysis of submarine slopes with spatially varying 

shear strength is shown in Fig. 3. 
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Fig. 3. Flowchart of reliability analysis of submarine 

slope based on random fields. 

After generating the RF, we combine it with the 

traditional LEM to evaluate the stability of submarine 

slope with consideration of the spatial variability of 

the soil shear strength. The coupled analysis is 

illustrated in Fig. 4. 

 

Fig. 4. Illustration of reliability analysis coupling 

LEM and RF. 

The statistics of the slip-surface depths obtained in 

the infinite slope model using three types of RF are 

shown in Fig. 5. 

 

Fig. 5. Histograms of position of failure surface using 

three types of RF. 

Conclusions 

The reliability analysis was performed to evaluate 

the stability of submarine slopes using the LEM 

coupled with RFs. The GPR-based surrogate model 

was used in MCS. Therefore, computation associated 

with the analysis is decreased. The following 

conclusions are drawn. 

(1) The spatial variability of sediment shear strength, 

which is commonly ignored in the traditional 

analysis of submarine slope, has a significant 

effect on the result of the stability evaluation. 

(2) The failure probability of the submarine slope 

decreases with the vertical correlation distance 

and tends to converge to a certain value in the 

infinite slope model under both static and seismic 

loading. 

(3) The computational efficiency is significantly 

increased by incorporating the GPR-based 

surrogate model into the reliability analysis. 

Therefore, the proposed GPR-based method has 

shown superiority and potential in the reliability 

analysis of submarine slope. 

 




