京都大学防災研究所公開講座 第28回 キャンパスプラザ京都 2017.10.11

近年の地震における地盤の液状化災害

京都大学 防災研究所 地盤災害研究部門 渦岡良介

内容

• 近年の地震における液状化災害の特徴

- 2016年熊本地震
- 2011年東北地方太平洋沖地震(東日本大震災)
- 1995年兵庫県南部地震(阪神·淡路大震災)
- 1964年新潟地震
- 液状化被害とその後の津波や降雨の問題
 - 河川堤防の液状化被害と高水(河川水位の上昇)

川岸町アパート(1964年新潟地震)

新潟空港ビル(1964年新潟地震)

地盤の永久変位(1964年新潟地震)

凡例

大分類	中分類	小分類	細分類	記号	河	旧堤防	旧堤防	S.30 年代後半~ S.40 年代前半	
山地				Л			S.20 年代		
台地。	段丘面				管理	河川管理施設		T.末期~S.初期	
		崖(段丘崖) 浅い谷						M.末期~T.初期	
Ê					施		堤防	完成堤防	·
低地	山麓堆積地形				設備	(許可工作物 も含む)		暫定堤防	
	扇状地				寺			暫々定堤防	
	氾濫平野						護岸		
	氾濫平野	後背湿地					河川工作物	水位観測所	
	扇状地, 氾濫平野	微高地(自然堤防)						流量観測所	
		旧河道	旧河道(明瞭)					水質観測所	0
			旧河道(不明瞭)					雨量観測所	0
		落堀						樋門·樋管	
	砂州•砂丘							水門·閘門	
人工改変地		干拓地					揚排水機場		
		盛土地·埋立地 切土地				事務	事務所·出張所	事務所	0
								出張所	•
形		連続盛土					距離標		•
そ		天井川の区間 現河道・水面					測線		
Ø									
他		旧流路	S.30 年代後半~ S.40 年代前半						
の			S.20 年代						
地			T.末期~S.初期						
が生ま			M.末期~T.初期						
•		地盤高線	主曲線						
			補助曲線			(地理院地区			

ポートアイランド(1995年兵庫県南部地震)

人工島で広範囲な液状化 とそれに伴う地盤流動 (ポートアイランド)

岸壁と背後地盤の変形 (ポートアイランド)

液状化範囲(2011年東北地方太平洋沖地震)

液状化による住宅被害

関東地方の液状化発生箇所(国土交通省 関東地方整備局・地盤工学会,安田進)

液状化による住家被害						
岩手県	3 棟					
宮城県	140 棟					
福島県	1,043 棟					
茨城県	6, 751 棟					
群馬県	1 棟					
埼玉県	175 棟					
千葉県	18,674 棟					
東京都	56 棟					
神奈川県	71 棟					
合計	26,914 棟					
	(9 都県 80 市区町村)					

(国土交通省都市局,平成23年9月27日調査時点,安田進)

液状化範囲(香取市)

治水地形分類図(香取市)

迅速測図:明治18年測量(香取市)

液状化地点(2011年東北地方太平洋沖地震)

図 3.5.16 微地形ごとの液状化発生傾向

液状化地点と微地形(熊本平野)

熊本市西区新港

(地理院地図)

岸壁と背後地盤の変形(1995年兵庫県南部地震)

相馬港1号埠頭(2011年東北地方太平洋沖地震)

小名浜港3号埠頭(2011年東北地方太平洋沖地震)

熊本市南区刈草·日吉

現地調査・空中写真判読による液状化地点

(福岡大学村上哲教授)

(福岡大学村上哲教授)

道路の被害(2011年東北地方太平洋沖地震)

千葉県浦安市(2011年東北地方太平洋沖地震)

千葉県浦安市(2011年東北地方太平洋沖地震)

千葉県浦安市(2011年東北地方太平洋沖地震)

益城町福富

河川沿いの宅地の側方流動(2016年熊本地震)

千葉県香取市(2011年東北地方太平洋沖地震)

熊本市南区御幸木部町·野田·川尻

2016年4月15日(前震後)

2016年4月16日(本震後)

3-2.緑川(直轄管理区間)における被害発生状況

<被害概要>

 ・緑川水系の直轄管理区間では、4河川105箇所において堤防天端の亀裂や特殊堤の損傷等の被災を 確認。被災を確認した箇所は、その都度応急対策を実施済み。 (国土交通省)

・被災規模の大きい11箇所については、緊急的な復旧工事を実施。

九州地方整備局 Kyushu Regional Develop

大阪市淀川(1995年兵庫県南部地震)

液状化災害のまとめ

- 主に重力の作用方 向に変形
- 重力作用下で地盤<
 剛性が低下したこと
 が原因
- 埋立地,旧河道,自
 然堤防などの液状
 化被害が顕著
- 液状化に伴う側方
 変位が発生する場
 合がある
- ・ 埋設管, 杭基礎の 破損は過大な地盤 変位の影響

(安田, 1988)

阿蘇山

(気象庁)

熊本県南阿蘇(2016年4月20日)

熊本県南阿蘇(2016年7月5~24日)

熊本県益城町(2016年6月21日,朝日新聞)

地震後堤体にクラックがあり、トンパックが置いてあったが流された(熊本県、岡二三生京大名誉教授)。

地震・降雨・浸透の複合作用

*Prototype scale

Test	沈下盛土層の	盛土の締固め度	加振条件		
code	相対密度 (%)	(%)	入力周波数(Hz)	加振時間(sec)	
N-1	48.4	78.6	-	-	
S-1	47.8	79.6	0.7	37.5	
S-2	48.0	80.6	0.7	37.5	
M-1	50.3	79.6	0.7	37.5	
M-2	46.3	80.2	0.7	37.5	
L-1	51.0	77.6	0.7	50.0	

混合砂(豊浦砂: 珪砂7号)の 物理的性質

$ ho_s$ (g/cm ³)	2.569		
w _{opt} (%)	13.2		
$ ho_{dmax}$ (g/cm ³)	1.61		
$ ho_{dmin}$ (g/cm ³)	1.33		

(居上ら, 2016)

Test code: L-1

<u>浸透実験結果</u>

浸透実験後の川裏側法尻部の状態

- •大きな浸透破壊は確認されなかった
- ・盛土内部の細粒分が川裏側へ流出

- ・局所的な浸透破壊が確認された
- •加振で発生したクラックが起点となり局所的な浸透破壊が発生(居上ら, 2016)

<u>浸透実験終了時付近における浸透流量の比較</u>

Test code	N-1	S-1	S-2	M-1	M-2	L-1
Seepage flow rate (m ³ /min)	<u>0.0093</u>	0.0074	0.0084	0.0186	0.0168	0.0112
Crest settlement (m)	—	0.068	0.109	0.263	0.178	0.495

まとめ

川表側からの高水を想定した水位上昇における浸透実験を,加振 したケースと加振しないケースに分け,遠心模型実験にて実施

- 加振により発生したクラック箇所を起点とし、川裏側法尻部から、 徐々に破壊していく様子が確認された。
- 天端沈下量が大きな値を示したケースに関しては、浸透実験時に 局所的な浸透破壊が発生し、実験終盤においては浸透流量が加 振を行っていないケースを上回る結果となった。

加振により発生するクラックが起点となり,浸透による局所的な破 壊を誘発することで浸透流量が増加する可能性

(居上ら, 2016)