大阪堆積盆地における微動H/Vスペクトルの多点観測による 盆地速度構造モデルの検証

Performance Check of the Velocity Structure Models Using Microtremor H/V Spectral Ratios in the Osaka Sedimentary Basin

浅野公之・岩田知孝・関口春子・宮腰 研(1)・西村利光(1)

Kimiyuki ASANO, Tomotaka IWATA, Haruko SEKIGUCHI, Ken MIYAKOSHI⁽¹⁾ and Toshimitsu NISHIMURA⁽¹⁾

(1) 一般財団法人地域地盤環境研究所

(1) Geo-Research Institute, Osaka, Japan

Synopsis

Microtremor H/V spectral ratio is analyzed to obtain the observational information for performance-checking and improving the three-dimensional velocity structure model of the Osaka sedimentary basin. Microtremor was observed at 100 strong motion stations in and around the Osaka basin. The observed peak period of H/V spectral ratio reflects the bedrock depth beneath the observed site. We identified areas where we need revise the model by comparing the observed H/V spectral ratios with the theoretical Rayleigh-wave R/V ratios from the present three-dimensional velocity structure models.

キーワード:大阪堆積盆地,単点微動観測,H/Vスペクトル比,三次元速度構造モデル **Keywords:** Osaka sedimentary basin, microtremor observation, H/V spectral ratio, three-dimensional velocity structure model

1. はじめに

大阪堆積盆地は,主に花崗岩からなる基盤岩に形 成された北東-南西方向に長軸を持つ楕円形に近い 盆地構造の上に,主として約300万年前以降の大阪層 群からなる厚さ約1~3kmの堆積層によって覆われ ている.大阪堆積盆地の端部は有馬-高槻構造線や 生駒断層帯,中央構造線などの活断層によって形成 されており,盆地内部には上町断層帯が大阪府内を ほぼ南北の走向で分布している.このような都市直 下の活断層帯で将来発生する大地震の強震動を予測 するには,各種の活断層調査などに基づく震源断層 のモデル化や活動履歴,平均変位速度などの把握に 加え,断層帯周辺を含む対象領域内での高精度な地 下構造モデルが必要である. 大阪堆積盆地では、これまでも多くの活断層調査 や地下構造調査のための物理探査(反射法地震探査, 微動探査,ボーリング調査など)が行われてきてお り、それらの物理探査情報や地質情報を統合するこ とにより、盆地の基盤形状と堆積層の三次元速度構 造モデルが提案・改良されている(例えば、香川ら、 1993;堀川ら、2003; Iwata et al., 2008; Iwaki and Iwata, 2011).また、大阪堆積盆地内及び周辺の既存の強 震・震度観測点において多数の地震波形記録が収集 され、堆積盆地内における地震動伝播・増幅特性の 把握や地下構造モデル高度化のための解析に用いら れている.

本研究では、これら既存の速度構造モデルの検証 及びさらなる改良に資するため、大阪堆積盆地のう ち大阪平野及び周辺に位置する既設強震・震度観測 点100地点で単点微動観測を新たに実施し,そのH/V スペクトル比を求め,既往の三次元地下構造モデル との比較検討を行った.

2. 単点微動観測

単点微動観測を実施した地点をFig.1(〇印)及び Table 1に示す.100地点のうち73地点は大阪府震度情 報ネットワークの観測点であり、このほかに気象庁 計測震度計観測点9地点,独立行政法人防災科学技術 研究所のK-NET 11地点及びKiK-net 5地点、大阪府咲 洲庁舎,独立行政法人港湾空港技術研究所六甲アイ ランド観測点で実施した.

地震計はLennartz Electronic製の速度計LE-3D/20s (固有周期20s,減衰定数0.707,感度1000V/(m/s)),収 録装置は白山工業製LS7000-XTを用いた.収録装置 のゲインは0dB,分解能は24bitとし,サンプリング 周波数100Hzで3成分の微動を収録した.現地での観 測は2011年8月25日から10月6日にかけての日中に実 施し,各地点で微動を30分以上連続収録した.また, 測定地点の地理座標をハンディGPS で計測した. 観 測実施状況の例をPhoto 1に示す.この地点では,写 真中のハンドホール内に既設震度計センサーがあり, 白い円筒状のものが本微動観測に使用した速度計 LE-3D/20s,手前のプラスチックケースの中には

Fig. 1 Map showing the microtremor observation sites with its predominant period of H/V spectral ratio (circles: this study, triangles: others)

LS-7000XT及びバッテリ等が入っている.

市街地での観測であるため、観測点近傍での通過 交通量が多いなど、記録されたデータの質が十分で ないと判断した9地点については、測定場所を見直す とともに微動の収録時間を1時間以上として、2011 年11月29日から12月2日にかけて再観測を実施した. 本研究で観測された微動波形例をFig.2に示す.

Photo 1 Microtremor observation at a strong motion station in the Osaka sedimentary basin

Fig. 2 The raw observed microtremor waveforms at JMA EBE station in the Kansai International Airport (The red colored portions are used for calculating H/V spectral ratios)

Station Code	Location	Lat.(deg)	Lon.(deg)
OSKP01	Konohana Ward Office, Osaka City	34.68335	135.45186
OSKP02	Sakai City Hall	34.57362	135.48291
OSKP03	Kishiwada City Hall	34,46095	135.37076
OSKP04	Toyonaka City Hall	34,78073	135,47070
OSKP05	Ikeda City Hall	34.82164	135.42914
OSKP06	Suita City South Fire Station	34,75682	135.52165
OSKP07	Izumiotsu City Hall	34,50399	135,41060
OSKP08	Takatsuki City Fire Department	34,84480	135.61389
OSKP09	Kaizuka City Hall	34.43727	135.35828
OSKP10	Moriguchi City Hall	34.73761	135.56471
OSKP11	Hirakata City Hall	34.81506	135.65125
OSKP12	Ibaraki City Fire Department	34.81587	135.56920
OSKP13	Yao City Hall	34.62660	135.60185
OSKP14	Izumisano City Central Fire Station	34.40780	135.32750
OSKP15	Tondabayashi City Kongo Fire Station	34.50059	135.57419
OSKP16	Nevagawa City Hall	34,76591	135.62837
OSKP17	Kawachinagano City Hall	34,45811	135,56465
OSKP18	Matsubara City Hall	34,57827	135,55205
OSKP19	Daito City Fire Department	34,70278	135.62428
OSKP20	Izumi City Hall	34.48314	135.42291
OSKP21	Minoh City East Fire Station	34,83880	135,50414
OSKP22	Kashiwara City Hall	34,57875	135.62714
OSKP23	Habikino City Hall	34,55754	135.60591
OSKP24	Kadoma City Hall	34,73924	135,58789
OSKP25	Settsu City Hall	34,77687	135.56200
OSKP26	Takaishi City Hall	34.52025	135.44234
OSKP27	Fujiidera City Hall	34.57459	135.59819
OSKP28	Higashi-Osaka City Hall	34.67962	135.60133
OSKP29	Sennan City Fire Department	34.36657	135.27484
OSKP30	Shijonawate City Fire Department	34.74045	135.63672
OSKP31	Katano City Hall	34.78851	135.68018
OSKP32	Osakasayama City Hall	34.50404	135.55554
OSKP33	Hannan City Hall	34.35949	135.23975
OSKP34	Shimamoto Town Fire Department	34.88642	135.66029
OSKP35	Toyono Town Office	34.91913	135.49440
OSKP36	Nose Town Office	34.97200	135.41473
OSKP37	Tadaoka Town Office	34.48734	135.40091
OSKP38	Kumatori Town Fire Department	34.40195	135.35429
OSKP39	Tajiri Town Office	34.39417	135.29132
OSKP40	Misaki Town Office	34.31664	135.14221
OSKP41	Taishi Town Office	34.51865	135.64783
OSKP42	Kanan Town Office	34.49157	135.62993
OSKP43	Chihaya-Akasaka Village Office	34.46419	135.62219
OSKP44	Sakai City Mihara Fire Station	34.53734	135.56206
OSKP45	Nishi-Yodogawa Police Station	34.71170	135.45348
OSKP46	Sakai City Fire Bureau	34.57343	135.45941
OSKP47	Izumisano City Fire Department	34.41488	135.30421
OSKP48	Osaka City Miyakojima Fire Station	34.70580	135.52605
OSKP49	Osaka City Kamifukushima Fire Sub-station	34.69364	135.48161
OSKP50	Osaka City Nishi Fire Station	34.67070	135.47395

Table 1 List of microtremor observation sites in this study (coordinates given in WGS84)

3. H/V スペクトル比の解析

単点微動観測により得られた微動波形記録から観 測場所近傍の交通振動等によるノイズ部分を目視で 除き,81.92秒間のタイムウィンドウを10区間以上抽 出した.それら各タイムウィンドウの微動波形記録 のフーリエ振幅スペクトルを求め,周波数軸上で Konno and Ohmachi (1998)の手法により平滑化した. NS成分とEW成分の二乗和をフーリエ振幅スペクト ルの水平成分とし,水平成分と上下成分のスペクト ル比(H/V)を得た.最後に各区間のH/Vスペクトル 比のアンサンブル平均を求め,観測微動H/Vスペクト ル比とした.

解析では本研究でデータを取得した上記100地点 に加え,2010年度に大阪平野南部6カ所(YNG:泉大 津市夕凪,HAT:堺市中区八田荘,HKS:堺市東区 日置荘,HBK:羽曳野市羽曳が丘,IBK:和泉市い ぶき野,TMK:堺市南区富蔵)で実施された微動ア レイ観測(吉見ら,2011)の中心点付近で行った3成 分微動観測の記録(地震計:東京測振製VSE-15D6, 収録装置:白山工業製LS-7000XT)および2010年度

Station Code	Location	Lat.(deg)	Lon.(deg)
OSKP51	Osaka City Sujio Fire Station	34.65714	135.43346
OSKP52	Osaka City Izuo Fire Sub-station	34.66152	135.47633
OSKP53	Osaka City Tennoji Fire Station	34.65976	135.51849
OSKP54	Osaka City Naniwa Fire Station	34.66344	135,49530
OSKP55	Osaka City Itakano Fire Sub-station	34,75842	135.54338
OSKP56	Osaka City Nakamoto Fire Sub-station	34.68005	135,54503
OSKP57	Osaka City Ikuno Fire Station	34.65024	135.53998
OSKP58	Osaka City Asahi Fire Station	34.72114	135.54373
OSKP59	Osaka City Hanaten Fire Sub-station	34.69533	135.55264
OSKP60	Osaka City Abeno Fire Station	34.63934	135.51633
OSKP61	Osaka City Sumiyoshi Fire Station	34.60093	135.49945
OSKP62	Osaka City Kumata Fire Sub-station	34.63426	135.54240
OSKP63	Osaka City Nishinari Fire Station	34.63599	135.49477
OSKP64	Osaka City Yodogawa Fire Station	34.72779	135.49170
OSKP65	Osaka City Tsurumi Fire Station	34.70490	135.57422
OSKP66	Osaka City Suminoe Fire Station	34.60926	135.47736
OSKP67	Osaka City Hirano Fire Station	34.62104	135.55814
OSKP68	Osaka City Kita Fire Station	34.70823	135.49951
OSKP69	Osaka Prefectural Government Office	34.68666	135.52045
OSKP71	Higashi Ward Office, Sakai City	34.53811	135.53696
OSKP72	Nishi Ward Office, Sakai City	34.53551	135.46417
OSKP73	Minami Ward Office, Sakai City	34.48641	135.49063
OSKP74	Kita Ward Office, Sakai City	34.56530	135.51668
K-NET HYG022	Hiraki Junior High School	34.74630	135.35004
K-NET OSK001	Kine Elementary School	34.97064	135.39050
K-NET OSK002	Takatsuki #2 Junior High School	34.85720	135.59579
K-NET OSK003	Teshima Park	34.76656	135.46849
K-NET OSK004	Shijonawate City Hall	34.74065	135.63971
K-NET OSK005	Kunijima Purification Plant, Osaka City Waterworks	34.72555	135.51007
K-NET OSK006	Bureau Sanho Park	34 58035	135.47046
K-NET OSK008(old)	Formar Higashi-Kishiwada Community Cantar	34,44300	135 38815
K-NET OSK008(new)	Katsuragi Tannis Court	34,44048	135 30102
K-NET OSK000(new)	Katsuragi Fennis Court Kinomidai #1 Park	34.43624	135 58104
K-NET OSK009	Operate Park	34.37422	135 25533
Kik-net OSKH01	Tajiri Seismic Observatory NIED	34 39780	135 28370
Kik-net OSKH02	Maishima Seismic Observatory, NIED	34,66260	135 38942
KiK-net OSKH03	Taishi Town Sports Park	34 52474	135.66154
Kik ast OSKH04	Kurondo Enchi Park, Osaka Prefecture People's	24.76200	125 70526
KIK-IICI USKH04	Forest	54.70508	155.70520
KiK-net OSKH05	Kema Sakuranomiya Park	34.71586	135.51979
JMA 57E	Minoh City Fire Department	34.83187	135.47087
JMA 57F	Takatuski City Hall	34.84546	135.61691
JMA 580	Tondabayashi City Central Library	34.50304	135.60014
JMA 581	Gofu-so Parking Lot	34.45814	135.37032
JMA 582	Sophia Sakai	34.53356	135.49168
JMA 583	Hamawaki Junior High School	34.73165	135.33514
JMA EBB	JMA Osaka Aviation Weather Station	34.78875	135.44394
JMA EBC	JMA Osaka District Meteorological Observatory	34.68208	135.51842
JMA EBE	JMA Kansai Aviation Weather Service Center	34.43352	135.23859
BRI SKS	Sakishima Office of Osaka Prefectural Government	34.63911	135.41408
ROKKOG	Rokko Island Marine Park	34.68033	135.26793

から2012年度にかけて大阪平野内15地点で実施した 連続微動観測(Asano et al., 2012)のうち4観測点

(UEMC09:尼崎市武庫之荘,UEMC10:豊中市旭丘, UEMC11:天王寺区夕陽丘町,UEMC15:大阪市西区 立売堀)における連続記録(地震計:東京測振製 VSE-15D6,収録装置:白山工業製LS-8800)から抽 出した記録も追加して解析した.これらの地点はFig. 1に△印で示されている.したがって,解析対象観測 点数は110である.Fig.3に全地点での平均H/Vスペク トル比を黒実線,各タイムウィンドウのH/Vスペクト ル比を細実線で示す.

上記の解析で得られた各観測点での観測H/Vスペ クトル比から、卓越周期を読み取った.各地点での 観測微動H/Vスペクトル比の卓越周期をFig.1の地図 上にカラーで示す.これにより、大阪堆積盆地内で の卓越周期の空間分布を把握できる.例えば大阪市 内では、此花区や港区など大阪港周辺で周期7秒前後、 上町台地上では、都島区や東淀川区で約3秒、中央区 や天王寺区で約4~5秒と地域により異なっており、 観測点直下の基盤深度の違い(例えば、宮腰ら、1997) を反映しているものと考えられる.

Fig. 3 Observed microtremor H/V spectral ratios (bold: average; thin: each time window; triangle: predominant frequency) compared with synthetic Rayleigh wave R/V ratios and velocity structure models at each site (blue: Iwata et al., 2008; magenta: Iwaki and Iwata, 2011; red: Horikawa et al., 2003; green: Osaka prefectural government, 2005)

Fig. 3 (continued)

Fig. 3 (continued)

Fig. 3 (continued)

Fig. 3 (continued)

Fig. 3 (continued)

4. 既往の大阪堆積盆地三次元速度構造モデ ルの検討

観測微動H/Vスペクトル比と既存の大阪堆積盆地 速度構造モデルから計算される理論Rayleigh波基本 モードの楕円率(以下, R/V比)を比較した.既存の 大阪堆積盆地速度構造モデルとして, Iwata et al. (2008)のモデル(大大特2006モデル), Iwaki and Iwata (2011)のモデル,堀川ら(2003)のモデル(産総研2003 モデル),大阪府(2005)のモデル(大阪府2004 モ デル)の4つを検討した.

大大特2006モデル(Iwata et al., 2008)はKagawa et al. (2004)をもとに,新たな探査情報を加えて構築されたモデルである.地震基盤の深度分布はスプライン関数によって表現されている.堆積層は一定の物性値(P波及びS波速度,密度)をもつ3つの層で表現され,各層の層厚は基盤深度に比例するように係数が与えられている.Iwaki and Iwata (2011)のモデルは,Iwata et al. (2008)のモデルを初期モデルとし,中規模地震記録を用いた波形インバージョンによって改良されたモデルである.

産総研2003モデル(堀川ら, 2003)及び大阪府2004

モデル(大阪府,2005)は、盆地内外の断層によって 対象領域をブロック分割することにより、逆断層に よる基盤の急変構造を表現している.堆積層部分は 大阪層群及び神戸・二上層群によって構成され、大 阪層群の物性値は堆積年代と埋没深度の関数(堀川 ら,2003)によって漸増的に得られる.堆積年代の分 布は、各地点における鍵層(Mal0, Ma3, Ma-1, 福 田火山灰層,松山-ガウス境界)の深度を内外挿す ることによって与えられている.

大阪堆積盆地においては、先行研究によって、基 盤深度と微動H/Vスペクトル比の卓越周期の間に比 例関係があることが知られている.例えば、宮腰ら (1997)は卓越周期T(s)と基盤深度z(km)に関する経 験式

$$z = 0.218T \tag{1}$$

を提案している(ただし, 1.0≤T≤6.0).

まず、本研究で微動を観測した100地点のうち、そ のサイトにおいてボーリング調査により基盤深度が 直接調べられている4地点(OSKH01, OSKH02, OSKH05, JMAEBE)について、観測微動H/Vスペク トル比と速度構造モデルにもとづく理論Rayleigh波 基本モードR/V比を比較した(Fig. 4). KiK-netの3

Fig. 4 Comparison of observed microtremor H/V spectral ratios (bold: average; thin: each time window) with synthetic Rayleigh wave R/V ratios and velocity structure models at four sites where their bedrock depths (horizontal arrows) are reported by boring surveys (blue: Iwata et al., 2008; magenta: Iwaki and Iwata, 2011; red: Horikawa et al., 2003; green: Osaka prefectural government, 2005)

地点におけるボーリング調査結果は、KiK-netのWEB サイトで公開されている土質柱状図を参照した.関 西国際空港に関しては、KIX18-1コアの調査結果(水 谷ら、2008)を参照した.理論Rayleigh波のR/V比は、 各観測点直下の一次元構造を三次元速度構造モデル から抽出し、Disper80(Saito、1988)によって計算し た.本来は、微動の水平成分にはRayleigh波のほかに Love波も含まれているが、ここでは、簡単のため微 動のH/V比はRayleigh波基本モードのR/V比で説明で きると仮定し、その卓越周期(ピーク周期)に着目 して議論を行う.

Fig. 4をみると,4つの速度構造モデルにおける基 盤深度はそれぞれ少しずつ異なっているが,図中の 矢印で示された実際の基盤深度に近い基盤深度をも つモデルが,より適切に観測微動H/Vスペクトル比の 卓越周期を説明している.このことから,本研究で 観測した微動H/Vスペクトル比が,その地点における 基盤深度の情報を有していることが確認できたため, 各地点での観測微動H/Vスペクトル比を用いて大阪 堆積盆地速度構造モデルの検討を進めることとした.

Fig. 3には大大特2006モデル(青), Iwaki and Iwata (2011)モデル(紫),産総研2003モデル(赤),大阪 府2004モデル(緑)での観測点直下の一次元速度構 造及びそれから計算されたRayleigh波基本モードの R/V比を観測微動H/Vスペクトル比(黒)に重ねてそ れぞれ示している.モデル領域外になっているいく つかの観測点では速度構造モデルによる理論R/V比 との比較は行っていない. Fig. 3を見ると、多くの観 測点で既存の速度構造モデルは観測H/Vスペクトル 比の特徴を説明しているものの,モデルによる再現 性が十分ではなく改良を要する観測点もみられるこ とがわかる.

次に, 観測H/Vスペクトル比と理論Rayleigh波基本 モード楕円率の卓越周期の差違の空間分布を把握す るため, 観測微動H/Vスペクトル比の卓越周期 T_{0obs} と計算されたRayleigh波基本モードR/V比の卓越周 期 T_{0cal} の比 T_{0obs}/T_{0cal} を計算した.ここでは, 代表例と して大阪府2004モデル及びIwaki and Iwata (2011)モ デルとの比較結果を示す.

Fig. 5 (左) は大阪府2004モデル, 同図(右) はIwaki and Iwata (2011)モデルである. 観測微動H/V比とモデ ルR/V比の卓越周期比は,大阪府2004モデルで0.60~ 2.27倍, Iwaki and Iwata (2011)モデルで0.68~2.45倍の 違いが見られた. いずれのモデルも観測を大局的に はよく説明している. 盆地北部の上町断層帯上盤側 は大阪府2004モデルの方が比較的良好といえる. こ れは,上町断層帯による基盤の段差構造がモデルで 考慮されているためと考えられる. 南部の湾岸部で はIwaki and Iwata (2011)の方がやや良好である. いず れのモデルにおいても,盆地南東部の泉北・羽曳野 丘陵や盆地北端部の北摂地域では,モデルR/V比の卓 越周期が観測微動H/Vスペクトル比の卓越周期に比

Fig. 5 Spatial distribution of T_{0obs}/T_{0syn} for the velocity structure models by Osaka prefectural government (2005) (left) and Iwaki and Iwaki (2011) (right)

べ長く,モデルの基盤深度が実際より深めに設定さ れている可能性が示唆される.また,四条畷市など 生駒断層帯近傍の盆地端部においても顕著なずれが みられる.以上のような領域では,速度構造モデル の改良が必要とされる.

また,盆地端部や基盤急変部近傍においては,波 動場の二次元・三次元的な効果が微動H/Vスペクトル 比に影響を及ぼす可能性も考えられる.例えば,微 動H/Vスペクトル比の振動方向依存性などを確認す る必要がある.しかし,上林ら(2009)は大阪堆積 盆地南部の泉南地域を対象とした分析を通じて,微 動H/Vスペクトル比は地震基盤の傾斜構造に対する 頑健性をもつことを指摘しており,それが大阪堆積 盆地内の他の地域でも成り立つのであれば,本研究 のように一次元構造の仮定のみであったとしても, 基盤深度を検討する上での問題は大きくはないと期 待される.

5. おわりに

大阪堆積盆地における地盤速度構造モデルの検証 及びさらなる改良に資するため、大阪平野及び周辺 に位置する既設強震・震度観測点100地点で単点微動 観測を新たに実施した.それらのH/Vスペクトル比を 求め、その卓越周期を既存の堆積盆地速度構造モデ ルから計算される理論Rayleigh波基本モードR/V比 の卓越周期と比較した.大阪堆積盆地においては、 詳細な速度構造モデルの作成が継続的に進められて きており、多くの地点において既存の速度構造モデ ルは観測微動H/Vスペクトル比の卓越周期をよく説 明することを確認した.従来のモデルにおいて情報 が十分ではなかったと考えられる泉北・羽曳野丘陵 や北摂地域、生駒断層帯近傍などにおいて、堆積盆 地速度構造モデルの改良が必要とされる地点が明ら かとなった.

「上町断層帯における重点的な調査観測(研究代 表者:岩田知孝)」において、本研究で取得した微 動H/Vスペクトル比のほかに、大阪堆積盆地内におけ る反射法地震探査、ボーリング調査、微動アレイ探 査、レシーバー関数解析によって得られた情報を統 合し、既存の産総研2003モデルや大阪府2004モデル をもとに、大阪堆積盆地の新しい三次元地盤速度構 造モデルが構築された(関口ら, 2013; 吉見ら, 2013).

謝 辞

現地での微動観測は,一般財団法人地域地盤環境 研究所の皆様に実施いただいた.大阪府危機管理室, 大阪府内各市町村及び兵庫県西宮市の危機管理・防 災担当部署,消防本部,教育委員会等,大阪府警察 西淀川警察署,気象庁大阪管区気象台,関西航空地 方気象台,大阪航空測候所,国土交通省大阪航空局, 独立行政法人防災科学技術研究所など多くの関係機 関にご協力をいただいた.独立行政法人産業技術総 合研究所活断層・地震研究センターの吉見雅行博士, 堀川晴央博士,竿本英貴博士,独立行政法人建築研 究所国際地震工学センターの林田拓己博士には,い ろいろとご議論頂いた。以上,記して感謝する.本 研究は平成22~24年度文部科学省委託研究「上町断 層帯における重点的な調査観測」(研究代表者:岩 田知孝)の一部として実施した.

参考文献

上林宏敏・川辺秀憲・釜江克宏・宮腰 研・堀家正 則(2009):傾斜基盤構造推定における微動H/Vス ペクトルの頑健性とそれを用いた大阪平野南部域 の盆地構造モデルの改良,日本建築学会構造慧論文 集,第74巻,第642号, pp.1453-1460.

- 大阪府(2005):平成16年度大阪平野地下構造調査 に関する調査成果報告書.
- 香川敬生・澤田純男・岩崎好規・南荘 淳(1993): 大阪堆積盆地における深部地下構造のモデル化,第 22回地震工学研究発表会講演概要, pp. 199-202.
- 関ロ春子・吉見雅行・浅野公之・堀川晴央・竿本英 貴・林田拓己・岩田知孝(2013):大阪堆積盆地3 次元速度構造モデルの開発,日本地球惑星科学連 合2013年大会予稿集, SSS33-P01.
- 堀川晴央・水野清秀・石山達也・佐竹健治・関口春 子・加瀬祐子・杉山雄一・横田 裕・末廣匡基・横 倉隆伸・岩淵 洋・北田奈緒子・Arben Pitarka (2003):断層による不連続構造を考慮した大阪堆 積盆地の3次元地盤構造モデル,活断層・古地震研 究報告,第3号, pp.225-259.
- 水谷崇亮・池田俊文・江村 剛・田端竹千穂・岡本
 憲三・岩根清信(1998):関西国際空港2期空港島
 深層ボーリング(KIX18-1)調査実施速報,土と基
 礎,第56巻,第1号, pp.36-39.
- 宮腰 研・香川敬生・越後智雄・堀江佳平・澤田純 男(1997):大阪堆積盆地における深部地盤構造の モデル化(その2),第24回地震工学研究発表会講 演論文集,pp.33-36.
- 吉見雅行・浅野公之・関口春子・林田拓己・堀川晴 央・竿本英貴・岩田知孝(2013):大阪堆積盆地三 次元地盤速度構造モデルの改良,日本地球惑星科学 連合2013年大会予稿集, SSS33-16.
- 吉見雅行・関口春子・浅野公之・堀川晴央・岩田知 孝・木村治夫(2011):大阪平野南部における微動

アレイ探査,日本地球惑星科学連合2011年大会予稿 集,SSS023-P26.

- Asano, K., Iwata, T. and Sekiguchi, H. (2012): Application of seismic interferometry in the Osaka basin for validating the three-dimensional basin velocity structure model, Proc. 15th World Conf. Earthq. Eng., Lisbon, Portugal, paper no. 0666.
- Iwaki, A. and Iwata, T. (2011): Estimation of three-dimensional boundary shape of the Osaka sedimentary basin by waveform inversion, Geophys. J. Int., Vol. 186, No. 3, pp. 1255-1278.
- Iwata, T., Kagawa, T., Petukhin, A. and Ohnishi Y. (2008): Basin and crustal velocity structure models for the simulation of strong ground motions in the Kinki area, Japan, J. Seismol., Vol. 12, No. 2, pp. 223-234.
- Kagawa, T., Zhao, B., Miyakoshi, K., and Irikura, K. (2004): Modeling of 3D basin structures for seismic wave simulations based on available information on the

target area: Case study of the Osaka basin, Japan, Bull. Seismol. Soc. Am., Vol. 94, No. 4, pp.1353-1368.

- Konno, K. and Ohmachi, T. (1998): Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seismol. Soc. Am., Vol. 88, No. 1, pp. 228-241.
- Saito, M. (1988): DISPER80: A subroutine package for the calculation of seismic normal-mode solutions, in D.J. Doornbos ed., Seismological Algorithms, Academic Press, pp. 293-319.

(論文受理日: 2013年6月11日)