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Synopsis 

In practice, design of stilling basin downstream of Flood Mitigation Dams 

(FMDs) is still facing several problems such as blockage of sediment passage and fish 

migration; and thus, it is necessary to improve its design. In this paper a new concept of 

stilling basin for FMDs is introduced; called In-ground Stilling Basin (ISB). Present 

study mainly focuses on experimental investigation on end-sill geometry at the end 

downstream of ISB. As results, several unique outcomes of experimental investigations 

have been obtained to improve the performances of FMDs as well as facilitate the fish 

and sediment passage.  
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1. Introduction  

 

Recently, huge floods have been experienced 

worldwide more often than the past and it causes 

severe losses and damages for human being 

properties and civilization. Thus, developing 

innovative strategies is vital for protection of urban 

area against the massive floods. One of the 

well-known constructive flood control measures is 

Flood Mitigation Dam (FMD) which attracted much 

attention over past decades. FMD is defined as a 

dam devoted only to flood retention and retardation 

which its storage volume is completely dry except 

for a few weeks per century, while in case of flood 

events the flood flow can be stored temporary its 

inside and gradually discharge out through its 

gateless bottom outlet (Lempérière, 2006).  

In practice, FMD’s design is still facing to 

several problems; and need more investigation in 

order to improve its design. In particular, design of 

stilling basin at the downstream of FMDs required 

to be modified. Stilling basin (SB) is a hydraulic 

structure aimed to dissipate the excess energy of 

flow and prevent the undesirable scouring at its 

downstream area by inducing hydraulic jump. 

Truncate of hydraulic jump within a limited area is 

not simply achievable, unless utilizing 

appurtenances such as fully width (continuous) 

end-sill with an adequate height to compact the 

jump, resulting in reduction of SB length and an 

economical design. But it should take in to account 

that, a fully width end-sill can negatively disrupt 

the fish migration and sediment transport in river 

system. Then, presence of fully width end-sill 

creates the contradictory goals for SBs.  

In this paper, a new concept of SB for FMDs is 

introduced; called In-ground Stilling Basin (ISB). 

ISB can be defined as a non-prismatic SB with a 

sudden transversal enlargement combined with a 

vertical abrupt drop at its upstream end where the 

bottom outlet of FMD is located. A positive step 

(an abrupt rise) at ISB’s downstream end, also, has 

been added to its geometry. The height of positive 

step is exactly equal to abrupt drop, so that it 
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different and complex characteristics whose overall 

characteristics at time are mainly referable to those 

of drop only, at other times to those of enlargement 

only, while yet other times the jumps just have 

autonomous characteristics. Additionally, they 

emphasize on necessity of specific experimental 

investigation for each type of hydraulic jump that 

can occur in order to design of structure.  

There are some differences between the present 

study and exist studies in the literature. First, the 

approach supercritical flow after discharging out 

through the bottom outlet was plunged into the ISB 

pool (drop box) and then was encountered to a 

positive step as well as an end-sill at the 

downstream end. Second, there was no adjustment 

for tail-water depth at further downstream of ISB. 

Third, the combination of positive step and the 

slit-type end-sill have not been examined yet.  

Present study experimentally evaluates the 

functionality of in-ground stilling basin (ISB) as an 

alternative of conventional stilling basin on energy 

dissipation of high velocity flow exiting from the 

FMD’s bottom outlet. Particular motivation during 

study was to solve the problem of fish and sediment 

passages disruption in conventional stilling basin 

design. Additionally, functionality assessment of 

ISB for residency of aquatic animals as a desire 

habitat was one of the other interest point in current 

research. Thus, an extended series of experiments 

were carried out to obtain the optimum ISB 

geometry (length and depth) as well as the 

necessary end-sill geometry (height and width) that 

would force and stabilize hydraulic jump for given  

 

 

 

 

 

 

discharge and bottom outlet dimension. Proposing a 

new design procedure by using the successful test 

outcomes is the ultimate goal of this experimental 

investigation which it should be valuable for 

practicing engineers. 

 

3. Experimental investigation 

 
3.1  Definition of main governing parameters  

Fig. 2 shows the schematic side and plan views 

of the constructed model at Disaster Prevention 

Research Institute of Kyoto University (Japan) 

including the main hydraulic parameters involved 

in this study. Functionality of an ISB can be 

discussed in two different aspects, hydraulic 

functionality (HF) and ecological functionality 

(EF). To evaluate the hydraulic functionality of an 

ISB different hydraulic criterion can be utilized i.e. 

velocity reduction along the ISB, energy dissipation 

within ISB, water level fluctuation inside the ISB 

and flow condition downstream of ISB. Based on 

the literature review and preliminary experiments, it 

was found that the hydraulic functionality (HF) of 

ISB may depend on the following parameters: the 

outlet velocity at the bottom outlet exit (U0), the 

bottom outlet width (b), the bottom outlet height 

(h1), the drop height or in other words, step depth 

(s), the ISB width (B), the ISB length (L), the 

sequent depth (h4), the end-sill height (he), the 

end-sill width (be), the water density (ߩ௪) and the 

gravitational acceleration (g): 

 

ܨܪ ൌ ݂ሺܷ, ܾ, ݄ଵ, ,ݏ ,ܤ ,ܮ ݄ସ, ݄, ܾ, ,௪ߩ ݃ሻ      (1) 

 

 

 

 

 

 

 

 

Fig. 2 The schematic side and plan view (not to scale) of experimental setup. 
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5  Conclusions 

 
The new concept of stilling basin as well as 

end-sill for FMDs has been proposed in this study, 

which could be environmentally acceptable from 

the point views of fish and sediment passages. The 

velocity reduction of stream-wise flow affected by 

different end-sill heights and width was 

experimentally investigated. On the basis of present 

study following conclusions are arrived at:  

(1) The presence of end-sill at the end downstream 

of ISB could stabilize the hydraulic jump 

symmetrically. 

(2) The taller fully end-sill can effectively reduce 

the magnitude of velocity within ISB compare to 

the shorter one. 

(3) Considering two free spaces at the lateral side of 

end-sill (slit-type) shows the almost equal function 

for velocity reduction with fully end-sill and 

positively provides additional effects for fish and 

sediment passing. 
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潜り跳水式減勢工の減勢効果に及ぼすエンドシル形状の影響 

 

 

Mohammad MESHKATI
(1) ・角 哲也・Sameh KANTOUSH

(2)
 

 

(1)
京都大学工学研究科 

(2)
エジプト・カイロドイツ大学 

 

要 旨 

流水型ダム下流に設置される減勢工の設計には，土砂や魚類の安全な通過のための課題が残されており，改

善が求められている。本研究では，河川環境に対する適合性を高めるために，ダム直下を潜り跳水式とした新

しい減勢工形式について，その考え方と水理設計上の課題について検討を行った。ここでは，減勢工下流に設

置されるエンドシル高さと形状に着目して水理実験を行った。その結果，減勢機能を満足しつつ，土砂や魚類

の通過機能も満たすことが可能な減勢工形状を結果を得ることができた。 
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