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Synopsis 

Chao-Phraya river basin is the most important river basin in Thailand that 

produces the main country products; therefore, flood can make loss to the national 

economy. In this study, the mathematical models have been applied to prepare flood 

information for an early flood warning system. HEC-RAS is applied for discharge and 

water level simulation in the main channel of Chao-Phraya River with unsteady state 

condition; consequently, it required data in the upstream, downstream and lateral 

boundary that can be estimated by Artificial Neural Networks (ANNs), Harmonic 

Analysis and Multiple Linear Regressions, respectively. HEC-RAS model calibration 

obtained 80% of correlation coefficient; besides, boundary data estimations can achieve 

the satisfied accuracy. Furthermore, the integrating of river flow model and boundary 

models obtained satisfied verification result during June to November, 2011. Thus, the 

integrated model can provide 4 days ahead of flood forecasting information.  
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1. Introduction  

 

Flood is a natural phenomenon of Chao-Phraya 

river basin because there are four sub-basins in the 

upper part and two huge dams that are influent to 

discharge in Chao-Phraya River. Therefore, flood 

forecasting information is necessary for dam 

operation planning and flood mitigation in this area. 

Although many researchers attempted to study 

about flood in this region, flood forecasting 

information still needs to improve the accuracy for 

a real time warning system. In 2000, Weesakul and 

Thammasittirong applied and developed AIT River 

Network model in the Chao-Phraya river delta with 

acceptable agreement flood forecasting results in 

1980, 1983 and 1995. Moreover, HEC-RAS that is 

applied for river flow model in this study had been 

developed in Chao-Phraya River by 

Visutimeteegorn et al. (2007) and his study aimed 

to analyze the effects on the upstream flood 

inundation in 1995. Whereas, the historical flood 

magnitude in 2006 is higher than in 1980, 1983 and 

1995; therefore, in this study, the data in 2006 were 

selected for model calibration to improve flood 

forecasting information. In addition, the model is 

verified with the data in 2011. Finally, the main 

objective of this study is providing and improving 

flood information for an early flood warning 

system.  

 

2. Study area and Scope of work 
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    Chao-Phraya river basin covers Thailand's 

land area of 20,125 sq.km and 372 km of length of 

Chao-Phraya river. It starts from the meet point of 

northern four sub-basin in Nakhon Sawan to the 

Gulf of Thailand in Samuth Prakarn. About 85% of 

the total runoff occurs in the months of July to 

December. Therefore, this period is used for model 

calibration.  

    HEC-RAS model is applied to simulate the 

flow in the channel of Chao-Phraya river to provide 

flood prediction information for an early flood 

warning system with unsteady state upstream and 

downstream boundary conditons. The upstream 

boundary of the model that is located at the meet 

point of northern four sub-basin (C.2) is estimated 

by ANNs model with back propagation method. 

The downstream boundary of the model is located 

at Fort Chula gaging station (C.54) at the river 

mouth just at the sea in the Gulf of Thailand. 

Because the water level at Fort Chula is influenced 

by the upstream of river discharge and the tidal 

wave from the sea, Harmonic Analysis method is 

applied at Fort Chula gaging station for prediction 

of water level at this gaging station. In addition, the 

lateral boundary of HEC-RAS model that is the 

flow from river branches (R.1, R.2, R.3, R.4 and 

R.5) are also added to the model. All boundary 

conditions are shown in Fig. 1. and the boundary 

condition information is shown in Table 1.  

 

3. Theoretical consideration 

 

In this study, the mathematical models that are 

written in the following information have been 

applied and integrated to prepare flood information 

for an early flood warning system. 

 

 
Fig. 1 Boundary condition of river flow model 

 

3.1 River flow model 

   Hydrologic Engineering Center River Analysis 

system (HEC-RAS) model is referring to the theory 

of one-dimensional river analysis for steady flow 

water surface profile computations and unsteady 

flow simulation. In this study, the application of 

HEC-RAS model is based on unsteady flow 

simulation which can be explained by two main 

equations. 

 

 
Fig. 2 Elementary control volume  

 

Table 1 Boundary condition information 

Sta. River Name Boundary Condition 

C.2 Chao-Phraya    Nakhonsawan       Discharge 

C.54 Chao-Phraya     Fort Chula       Water level  

Dam Chao-Phraya     CH dam          Controlled gates  

R.1 Chainat-Ayutthaya     Maharat       Water level 

R.2 Makhamtao-Uthong     M-U       Water level 

R.3 Chainat-Pasak     Manorom       Water level 

R.4 Noi     Boromatad       Water level 

R.5 Tachean     Poltep       Water level 
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(1) Continuity equation  

The elementary consideration of control volume is 

shown in Fig. 2. The distance x is measured along 

the channel. At the midpoint of the control volume 

the flow and total flow area are denoted Q(x,t) and 

AT, respectively. The total flow area is the sum of 

active area A and off-channel storage area S. The 

continuity equation can be written as equation 1. 
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Where x is distance along the channel, t is time, Q 

is flow, A is cross-sectional area, S is storage from 

non-conveying portions of cross section and 

is lateral inflow per unit distance. 

 

(2) Momentum equation 

The momentum equation states as shown in 

equation 2, the rate of change in momentum is 

equal to the external forces acting on the system for 

a single channel.  
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Where g is acceleration of gravity,is   friction 

slope and V is velocity.   

 

3.2 ANNs 

   Artificial Neural Network (ANNs) is an 

information processing model that is stimulated by 

the biological nervous systems. The processes of 

ANNs back propagation method are shown in Fig.3 

for upstream discharge forecasting.  

 

 

 

Fig. 3 ANNs Back Propagation Method 

    For this method, there are two main steps that 

are forward pass and backward pass. Firstly, data 

will be normalized for converting all in the same 

unit. Defining parameters, learning rate range 

should be 0.1-0.3, momentum rate range should be 

0.1-0.5 and the selected activation function is 

sigmoid function. Also, weighting inputs random 

initialization should be -1 to 1. Secondly, the model 

running will use an error from forward pass for 

adjusting the new weight in backward pass, and the 

new weight will be used in the new forward pass 

iteration until the calculation reaches to the 

stopping criteria with 10,000 iterations that are 

enough to obtain the minimum error.  

 

3.3 Tide analysis 

   The tide analysis that is called Harmonic 

Analysis purposes to determine 

the amplitude and phase (tidal harmonic constants) 

of the individual cosine waves. The partial 

tide corresponding to a single tidal constituent is 

represented by the following equations, 

 

                          (3) 

 

 

where a is the mean sea level, N is the total number 

of constituents    ,    and    are the amplitude, 

phase and period of the    constituent. The values 

of   ,  ,   can be determined for each 

corresponding values of    using the information 

that are obtained from tidal records.  

 

3.4 Linear regression analysis 

   Regression analysis is a statistical technique 

that efforts the relationship between two or more 

variables using a straight line. The variables are 

Criterion Variable (Y) and Predictor Variable (X). 

For the river branch data, there are two predictor 

variables from rainfall and water level relate to one 

criteria variable; therefore, the multiple linear 

regression method has been applied in this model. It 

can be written in the mathematical equation as; 
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can be estimated by least squares method, and ε is 

an error. In the least-squares model, the best-fitting 

line for the observed data is calculated by 

minimizing the sum of the squares of the vertical 

deviations from each data point to the line. The 

residuals, ε are the difference between the observed 

and fitted values; hence, the sum of the residuals is 

equal to zero. 

 

3.5 Statistical evaluations 

   The statistical evaluation functions can evaluate 

the calibrated and forecasted accuracy. They can 

perform the reliability of flood information which is 

simulated by integrating models for an early flood 

warning systems. Therefore, there are three kinds of 

statistical functions that have been calculated in this 

study to evaluate the accuracy of models. 

 

(1) Correlation coefficient (r)  

   The correlation coefficient is a measure how 

well the relationship between two variables of the 

predicted values and actual values. The correlation 

coefficient is a number between 0 and 1.  If there is 

no relationship between the predicted values and 

the actual values the correlation coefficient is 0. 

The correlation coefficient equation is shown in the 

equation 5.  
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(2) Mean Absolute Error (MAE) 

   Mean Absolute Error is an average of the 

difference between an estimated value and observed 

value to evaluate the simulated data, without 

considering their direction. It measures accuracy 

for continuous variables. The formula of this 

calculation is shown in equation 6.  
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(3) Root Mean Square Error (RMSE) 

   Root mean square error (RMSE) is an error 

measure from the differences between values 

predicted by a model or an estimator and the 

observed values. The RMSE equation is shown in 

equation 7.  

     

           (7) 

 

 

(4) Efficiency Index (EI) 

The efficiency index is a ratio between calculated 

value and observed value. The efficiency index 

equation is shown in Eq. 8. 
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Where X is measured value, X  is average of 

measured value, Y is calculated value, Y  is 

average calculated value and N is number of data.  

 

4. Results 

 

HEC-RAS model is applied for the river flow 

simulation in the main channel to provide flood 

forecasting information to an early flood warning 

system with unsteady state condition and it needs 

some boundary data in the upstream, downstream 

and lateral flow from river branches. Hence, ANNs, 

Multiple Linear Regression and Harmonic Analysis 

are applied for estimating upstream discharge, river 

branch water level and downstream water level.  

 

4.1 HEC-RAS 

   There are two parts of calibration that are 

parameter calibration and inline structure water 

release calibration.  

 

(1) Parameter calibration 

   Before HEC-RAS is ready for flood forecasting, 

model is needed to calibrate the water level. There 

are five parameters have been calibrated that are 

Manning’s n roughness coefficient in main channel, 

Manning’s n roughness coefficient in floodplain, 

Free flow discharge coefficient, Submerge flow 

discharge coefficient and Discharge coefficient 

when the gate opening exceeding the flow 

subscribed by   ,   ,   
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Visutimeteegorn (2006) as shown in Table 2. 

Finally, the statistical evaluations of parameter 

calibration are 0.68m of RMSE and 90% of EI. 

Also, the correlation coefficient is about 80%. Thus 

the model can be estimated an accurate water level 

and the results of water level are shown in Fig. 5 - 

Fig. 10 and the gage locations are shown in Fig. 4. 

 

Table 2 The selected typical parameter values 

Parameter 
Typical 

Value 
Range Reference 

rn  

fn  

fc  

sc  

wc  

 

0.025 

 

0.055 

 

0.5 

 

0.6 

 

0.6 

 

0.025-0.060 

 

0.035-0.160 

 

0.4-0.8 

 

0.6-0.8 

 

0.6-0.8 

 

 

 

 

 

 

 

 

 

US Army 

(2010) 

 

 
Fig. 4 The gage location of calibrated results 

 

 
Fig. 5 Calibrated result at Manorom  

 

Fig. 6 Calibrated result at Makhamtao-Uthong 

 

 
Fig. 7 Calibrated result at Maharat 

 

 
Fig. 8 Calibrated result at Ban Bangpudsa 

 

 
Fig. 9 Calibrated result at Ban Bangkaew 

 

(2) Inline structure calibration 

   There is the inline structure, Chao-Phraya dam 

that is located at the Chao-Phraya River. It has 16 

radial gate openings with 7.50m height and 12.50m 
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width. The maximum water release is about 3,300 

CMS; however, it is controlled to release only  

 

 
Fig. 10 Calibrated result at Memorial Bridge 

 

2,500 CMS for protecting the effect in downstream 

areas. Also, the different water level between 

upstream and downstream should not be exceeded 

10m.   

 

 

Fig. 11 Chao-Phraya dam gate operation graph 

 

    Referring to the historical data in Fig. 11 of the 

flood control period during June to December, 2006, 

the model assumed that the gate is automatic 

controlled. The open rate of 16 dam gates is 

specified from the positive slope of dam gate 

operation graph; while, the negative slope of the 

graphs are shown the close rate of dam gates. 

Moreover, each gate has the different maximum and 

minimum opening operation. Finally, the gate 

control rules are added to inline structure part of 

HEC-RAS model to simulate the water level for 

flood warning system. The result of water release 

calibration from the downstream of Chao-Phraya 

dam station (C.13) by using the specified control 

rules from the historical data is shown in Fig. 12. 

When the observed data and simulated data are 

compared by statistical evaluation equation; 

therefore, MAE is 0.617m and EI is 94%. Thus, the 

results can be acceptable.   

 

 
Fig. 12 Calibration result at Chao-Phraya dam 

station (C.13) 

 

4.2 Upstream boundary data estimation 

   Chao-Phraya collects discharge from four upper 

sub-basins, with two of them influenced 

significantly by the two huge reservoirs Bhumibhol 

and Sirikit, setting up the proper upper boundary 

conditions for a numerical river flow model for the 

purpose of establishing an early flood warning 

system for the downstream reaches of the 

Chao-Phraya river is not an easy effort. Therefore, 

Artificial Neural Networks (ANNs) is applied to 

Table 3 Different training cases of ANNs 

case 

runoff station (input) output 

D.2 

(t-4) 

D.1  

(t-3) 

W.4A 

(t-3) 

P.7A 

(t-2) 

Y.17 

(t-2) 

N.5A 

(t-2) 

N.67 

(t-1) 

P.17 

(t-1) 

C.2 

(t) 

1 O O O O O O O O O 

2 O O X X X X O O O 

3 O O O X O X O O O 

4 O O O O O O X X O 

5 X X O O O O O O O 

6 X X O O O O X X O 

Note: O used, X non-used 
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estimate the appropriate upstream river discharge 

for use in the upper boundary condition of the 

integrated river flow model.  

    The upstream river discharge estimation has 

been done with the data from June to December, 

2006 by ANNs model. There are six training cases 

with the different travel time from the station to C.2 

as shown in Table 3 and the gage station locations 

are shown in Fig. 13. The best result of ANNs 

training process is in case 3 with 6 nodes of river 

discharge input data from Bhumibhol dam (D.1), 

Sirikit dam (D.2), W.4A, Y.17, N.67 and P.17 gage 

stations. The number of hidden node in hidden 

layer is 6 nodes, and the number of node in output 

layer is 1 node from gage station C.2. The 

statistical evaluation results of this network are 

99% of Efficiency Index and 55.952 of Root Mean 

Square Error. Therefore, this network is selected 

for runoff forecasting in the upper boundary 

condition of HEC-RAS model.  

    After the suitable network is obtained the 

selected network will be set for river discharge 

forecasting as shown in Table 4. Lastly, the trend 

of forecasted accuracy is reducing for the next time 

step as shown in Table 5. In addition, ANN 

network 7-14-1 means the number of input node in 

input layer is 7 nodes, the number of hidden node 

in hidden layer is 14 nodes and the number of 

output in output layer is 1 node. 

 

Table 5 Forecasting results 

day 
ANN 

Network 
EI% 

MAE 

(cms) 
RMSE 

t+1 7-14-1 99 29.93 92.56 

t+2 8-16-1 98 150.13 327.58 

t+3 9-18-1 93 272.15 579.25 

t+4 10-20-1 91 334.52 652.75 

 

Fig. 13 Runoff stations for ANNs 

 

4.3 Downstream boundary data estimation 

    The downstream boundary of the model is 

located at Fort Chula gaging station at the river 

mouth just at the sea in the Gulf of Thailand. The 

water level at Fort Chula is influenced by the 
upstream of river discharge and the tidal 
wave from the sea. Therefore, Harmonic 
Analysis method is applied at Fort Chula 
gaging station for estimation of water level 
at this gaging station. In this analysis, the 
number of constituents and the tidal length 
records are determined to achieve the best 
tidal forecasting for 7 days ahead in 2006. 
The number of harmonic analysis 
constituents varies from 4 to 8 constituents 
and the record length varies from 7 to 80 
days. Therefore, Fig. 14 shows the 
comparison of Root Mean Square Error 

Table 4 River discharge forecasting by ANNs 

Forecasting 

date 

runoff station (input) 

D.2 

(t-4) 

D.1 

(t-3) 

W.4A 

(t-3) 

Y.17 

(t-2) 

N.67 

(t-1) 

P.17 

(t-1) 

C.2 

(t) 

C.2 

(t+1) 

C.2 

(t+2) 

C.2 

(t+3) 

C.2 

(t+4) 

1 O O O O O O O result       

2 O O O O O O O O result     

3 O O O O O O O O O result   

4 O O O O O O O O O O result 
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(RMSE) of Harmonic Analysis for various 
record length and number of constituents. 
The comparison of Root Mean Square Error 
(RMSE) and Efficiency Index (EI) of  

 

Harmonic Analysis at Fort Chula station, the result 

of 4 constituents (N=4) for 35 days record length 

showed the smallest RMSE and highest EI, 0.178m 

and 96%, respectively. 

 

Fig. 14 RMSE comparison of Harmonic Analysis at 

Fort Chula in 2006 

 

Furthermore, harmonic analysis of water level in 

the Gulf of Thailand is based on the four main tide 

constituents that are: 

(1) Principal lunar M2 with a period of 12.4206 

hours. 

(2) Principal solar S2 with a period of 12.0000 

hours. 

(3) Luni-solar declinational K1 with a period of 

23.9346 hours. 

(4) Large lunar declinational O1 with a period of 

25.8194 hours. 

All principle constituents are explained in the 

appendix. Finally, the forecasting evaluation of 

various day ahead, the seven days ahead forecasting 

is obtained with satisfactory results. Therefore, this 

harmonic model shows a forecast of hourly tidal 

data for 7days ahead with 87% of EI as shown in 

Fig. 15. The longer period ahead of prediction or 

forecasting shows increasing error of forecast 

especially at the peaks and troughs of the tidal 

fluctuation.  

 

 
Fig. 15 Results of tidal level forecasting 

 

4.4 Lateral boundary data estimation 

   The lateral boundary data or river branch data 

of river flow model are controlled by regulator 

which connects to the main river channel. Therefore, 

Linear Regression method is applied for the lateral 

boundary data estimation to estimate the river 

branches water level. The linear regression 

equations are defined from multiple regressions 

with two predictors from upstream water level of a 

regulator and rainfall from the nearest rain gage 

stations to estimate downstream water level of each 

river branch regulator. The estimated water level 

evaluations of the river branch are shown in Table 6. 

The average correlation coefficient of five river 

branches is 73% and the results of estimated water 

level are shown in Fig. 16 – Fig. 20. 

 

 

Fig. 16 The estimation results at R.1 

Table 6 Water level estimation in the river branch results 

Sta. River Name r MAE 

R.1 Chainat-Ayutthaya Maharat 0.81 0.368 

R.2 Makhamtao-Uthong M-U 0.78 0.284 

R.3 Chainat-Pasak Manorom 0.68 0.476 

R.4 Noi Boromatad 0.70 1.049 

R.5 Tachean Poltep 0.66 0.702 
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5. Model verification 

 

The verification of river flow model has been 

done during June to November, 2011. The results 

are shown in Fig. 21 with 1.026m of RMSE and 

94% of correlation coefficient at Ban Bangpudsa 

station (C.3). In the figure, the simulated flood 

duration shift from observation 4 days, and it starts 

from 10th October until 8th November, 2011; 

whereas, the observed flood duration is 6th 

September to 14th November, 2011.  

 

 

Fig. 17 The estimation results at R.2 

 

 
Fig. 18 The estimation results at R.3 

 

 
Fig. 19 The estimation results at R.4 

 

Also, there is small flood in the simulation of Fig. 

22, and the flood peak is different from observed 

stage 0.40m at Ban Bankaew station (C.7A) with 

0.353m of RMSE and 97% of correlation 

coefficient. 

 

Fig. 20 The estimation results at R.5 

 

 
Fig. 21 Verification results at C.3 

 

 
Fig. 22 Verification results at C.7A 

6. Flood forecasting 

 

The estimated boundary data models and 

HEC-RAS are integrated to forecast the water level 

in the Chao-Phraya River for 4 days ahead, and the 

observed rainfall data are utilized for the integrated 

model. For the real time warning system, it 

provides the daily forecasted information and the 

evaluations of forecasted results are shown in Fig. 

23 - Fig. 30. The correlation coefficient of water 

level itself in the main channel stations which are 

C.7A and C.35 can obtain fairly accuracies as 

shown in table 7. Moreover, the evaluation of 

correlation coefficient by evaluate in terms of 
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"change from initial value" that is subscribed by 

Δ(t+n), can obtain the fairly accuracy as shown in 

table 8. Thus, the trend of forecasting accuracy is 

decreasing when the time step is increasing. For the 

comparison of forecasting results and observation 

results are changing by different seasons. In the 

start of rainy season during August to September, 

the change of water level forecasting is much 

fluctuated. Furthermore, the water level during 

rainy season, September to October is under 

estimated (negative deviation values) in time step 

t+1 (one day ahead forecasting); in contrast, next 

time steps from one day ahead are almost over 

estimated (positive deviation values). Especially, 

during the peak of flow at the middle of October, 

the trend of forecasting is increasing when the time 

step is increasing. The reason is the travel time in 

the model might be later than in the real situation. 

Then, the model should be adjusted for the suitable 

time step of forecasting. Thus, improvement of 

accuracy and extension of forecasting time should 

be developed in the future work.  

 

Table 7 The correlation coefficient of water level  

station 
correlation coefficient 

t+1 t+2 t+3 t+4 

C.7A 0.989 0.969 0.959 0.952 

C.35 0.975 0.962 0.950 0.935 

 

Table 8 The correlation coefficient by change from 

initial value 

station 
correlation coefficient 

Δ(t+1) Δ(t+2) Δ(t+3) Δ(t+4) 

C.7A 0.758 0.665 0.610 0.540 

C.35 0.629 0.611 0.564 0.500 

 

 

Fig. 23 Forecasting result of C.7A at time t+1 

 

 

Fig. 24 Forecasting result of C.7A at time t+2 

 

 
Fig. 25 Forecasting result of C.7A at time t+3  

 

 

Fig. 26 Forecasting result of C.7A at time t+4  

 

 

Fig. 27 Forecasting result of C.35 at time t+1 
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Fig. 28 Forecasting result of C.35 at time t+2 

 

 

Fig. 29 Forecasting result of C.35 at time t+3 

 

 

Fig. 30 Forecasting result of C.35 at time t+4 

 

7. Early flood warning system 

 

    The flood inundation information can predict 

the flood magnitude from water which exceeds the 

river capacity. Chao-Phraya river basin always 

flood because of overbank flow; especially, the 

critical part of Chao-Phraya River mainly in a 

storm season. Finally, an early flood warning 

system can monitor the flood duration and 

magnitude; however, it needs to improve for more 

reliable flood information. Therefore, an early flood 

warning system procedure is shown in Fig. 31.  

    From Fig. 32, the capacity of Chao-Phraya 

River at Chao-Phraya dam downstream station 

(C.13) is about 2,900cms; meanwhile, the 

maximum discharge is 4,188cms in October 19th, 

2006. Therefore, an observed maximum flood 

inundation volume in 2006 is 1,759MCM (Fig. 33) 

during October 5th to November 4th, 2006. 

 

 
Fig. 31 An early flood warning system 

 

 

Fig. 32 Capacity of Chao-Phraya River 

(Source: Ang Thong Irrigation Project) 

 

 

Fig. 33 Observed discharge at C.13 

 

    For the simulated data in 2006, the maximum 

discharge is 3,874cms in October 26th, 2006. 

September 29th to November 8th, 2006 is the flood 

duration that discharge exceeded the river capacity. 

The simulation of river discharge in 2006 showed 

the maximum discharge is under estimating 

comparing with the observed data about 7% and the 

simulation of flood duration is longer than 

observation. Finally, an early flood warning system 

can monitor the flood duration and magnitude; 

however, it needs to improve for more reliable 
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flood information.  

 

8. Conclusions 

 

The statistical evaluation of river flow model 

calibration and boundary estimation in the upstream 

by ANNs and downstream by Harmonic Analysis 

are satisfactory. However, the Multiple Linear 

Regression can estimate the fairly satisfied 

accuracy of water level in the river branches. 

Moreover, the trend of flood forecasting by 

integrated model is changing by seasonal and the 

accuracy is decreasing when the time step is 

increasing. The integrated model still needs to 

improve the accuracy and extend the time of 

forecasting information. Therefore, the future plan 

of the study will use the forecasted rainfall data 

from the coupling model of land surface process 

and cloud resolving storm simulator, namely 

CReSiBUC model to improve the accuracy of flood 

information and extend the time of forecasting. 

Finally, the reliable flood information will be 

monitored on the real time flood warning system of 

Nakhon Pathom Rajabhat University server. 
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Appendix 

 

Table A1 Principal tidal constituents (Defant, 1961) 

Name Symbol Period (hr) 

Luni-solar diurnal 
K 1  

23.9346 

Principal lunar diurnal 
O 1  

25.8194 

Principal lunar 
M 2  

12.4206 

Principal solar 
S 2  

12.0000 

Larger lunar elliptic 
N 2  

12.6582 

Luni-solar semidiurnal 
K 2  

11.9673 

Larger lunar evectional 
2  

12.6258 

Variational 
2  

12.8719 

Smaller solar elliptic 
L 2  

12.1918 

Larger solar elliptic 
T 2  

12.0164 

Lunar elliptic second 

order 
2N 2  

12.9055 

Smaller lunar 

evectional 2  
12.2216 

Principal solar diurnal 
P 1  

24.0658 

Larger lunar elliptic 
Q 1  

26.8677 
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洪水早期警報システムのためのチャオプラヤ川下流域統合モデル 
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(2) タイ国ナコンパトムラジャパット大学持続可能水資源および減災管理研究センター 

 

要 旨

    チャオプラヤ川流域は国内生産の大部分を生み出すタイ国で最も重要な流域であるため, チャオプラヤ川の洪水

はタイ国の経済に多大な損失をもたらす。本研究では, 早期洪水警報のための洪水予測情報を提供するために, 数値モ

デルが適用された。非定常流条件でHEC-RASがチャオプラヤ川本川の洪水流計算に適用される。この結果、上流端、下

流端, 側方流の境界条件が必要となるが, これらはそれぞれ ANN, 調和解析, 多重線形回帰により推定される。河道の

パラメータ, 河道内流量調整施設（チャオプラヤダム）のキャリブレーションにおいて, 相関係数が0.8以上, 境界条

件の推定精度も相関係数90%以上が達成された。さらに本モデルを2011年の洪水に適用したところ, 1日先, 2日先, 3

日先予測でそれぞれ98%,96%,95%の精度が得られた。 

 
キーワード：洪水予測, チャオプラヤ川, 河道流モデル, 統合モデル 
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