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Development of a Scale Invariant Muskingum-Cunge Routing Method
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Synopsis

It is found that a basin hydrological simulation in relations with drainage basin
dominating geomorphological parameters is directly influenced by the scale of DEM
resolution. A Scale Invariant model for the topographic index distribution (Pradhan et al.,
2004a) has fulfilled a part of this gap. A scale independent relationship in flood routing
models in a distributed hydrological model is yet to be developed. To overcome this
problem, scale laws that govern the relation in digital elevation data resolution on upslope
contributing area has been analyzed and a mathematical formulation has been derived that
successfully downscaled the upslope contributing area from coarse resolution DEM to
target fine resolution DEM. The method to downscale the upslope contributing area is used
to obtain the similar distribution of depth, cross-section and wave celerity from different
DEM resolutions in Kamishiiba catchment (210 km?) and to develop a scale invariant

Muskingum-Cunge routing method.
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generalizations of what is actually present. The need

Hydrological geomorphology is literally the
interface between hydrology, the science of water and
geomorphology, the study of landforms and their
causative processes. Despite the enormous capacity
of today’s (and tomorrow’s) information technologies,
the complexity of the Earth’s surface is such that the

most voluminous descriptions are still only coarse

for continued and sustained research on scale issues

in  hydrological geomorphology is therefore
self-evident.

Much of the spatial variability can be ignored at
“small” spatial scales on the order of 0.1- 1.0m.
Indeed, the scientific understanding of individual
hydrologic processes at laboratory scales, such as

flow through saturated and unsaturated columns of



porous media, is fairly well advanced. In particular,
one wants to know how the laboratory-scale
equations can be spatially integrated so as to describe
the hydrologic cycle over a hillside. As the spatial
scale under consideration increases to that of a single
hillside, spatial variability becomes important, and
new elements begin to influence the hydrologic mass
balance, such as the topography of the hillside. With
the development of the scale invariant model for the
topographic index distribution, Pradhan et al. (2004)
showed a possibility of spatially integrating the
laboratory-scale equations to provide a consistent
hydrologic mass balance in a topography driven
model, TOPMODEL.

Beyond a single hillside, a river basin can be
viewed as a channel-network-hills system. The
hydrologic cycle for larger sub-basins involves the
spatially integrated behaviors of several hills along a
channel network. An understanding of the spatial
variability among hillsides and their interactions
through a channel network is necessary for this
integration. Thus, at this point scale invariance in
surface wave models finds an important component
of the hydrologic cycle in river-basin hydrology.
Although the relative importance of the components
in the rainfall-runoff transformation process depends
both on its working scale and on the geographical,
climatic and environmental conditions of the site
under consideration, the relative importance of
routing phenomenon in surface flow hydrology
cannot be ignored for a complete process model that
offers a detailed description of the rainfall-runoff
transformation.

The basic guide line set by this research to obtain
physically  based  hydrological  relationships
independent of regions and scales is to develop an
effective translation method of the scale dependence
of the

relations dominating hydrological and

geomorphologic processes linked to typical properties

of the catchment into effective hydrological model.
Thus, this research is focused on the development of
the scale invariance in catchment hydrology to
develop a model consistent with observations. The
model can be a potential tool to predict ungauged
basins in an effective way.

Flow routing in channels has been a subject of
much discussion for over half a century and more
especially since the advent of digital computers.
Flow routing is a technique for determining the
propagation of flow from one point in the channel to
another. Flow routing in open channels entails wave
dispersion, wave attenuation or amplification and
wave retardation or acceleration. These wave
characteristics constitute the hydraulics of flow
routing or propagation and are greatly affected by the
geometric characteristics of channels. The flow
variables whose propagation characteristics are of
interest are discharge, velocity, depth, cross-section,
volume and duration. Upslope contributing area is a
key variable because of its intrinsic capability to
describe the nested aggregation structure embedded
in the fluvial landforms and its important physical
implications (e.g., Rodriguez-Iturbe and Rinaldo,
1997; Leopold and Maddock, 1953). In catchment
hill slope channel routing these flow variables is a
function of upslope contributing area. In this research
the scale dependence of the upslope contributing area
is analyzed and a mathematical derivation to

downscale the upslope contributing area has been

proposed.

2. Development of Scale Invariant Model for the
Upslope Contributing Area
In a DEM based distributed hydrological model,
upslope catchment area at a point is the number of
pixels draining through that point (Rodriguez-Iturbe
and Rinaldo, 1997). In Figure 1(a), the smaller

contributing area less than a km?® that appears over
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Fig. 1 Comparison of upslope contributing area distribution function from different DEM resolutions in
Kamishiiba catchment (210 km?) (a) without downscaling method for upslope contributing area (b) with

downscaling method for upslope contributing area.

97% in 50m DEM resolution is seen completely lost
when 1000m DEM resolution is used.

The density of the small contributing area is
higher in a catchment. In Figure 1(a), it is observed
that this small contributing area less than a grid area
of the coarse resolution DEM used is completely lost.

In fact the smallest contributing area derived
from a DEM resolution is a single grid of the DEM at
that resolution. Thus area smaller than this grid
resolution is completely lost as the larger sampling
dimensions of the grids act as filter. But as we use
finer resolution DEM, the smaller contributing area -
that is the area of finer grid resolution is achieved.
From this point of view, we introduced number of sub
grids N, (see Figure 2) to derive scaled upslope

contributing area as shown by Equation 1.
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Fig. 2 Concept of N; as sub grids within coarse

grid resolution.

where the suffix i is a location in a catchment. Cis.gieq
is the scaled upslope contributing area at a point i, I,
is a influence factor. N, is the total number of
subgrids within a coarse resolution grid. Figure 3 is
an illustration to clarify the concept of N,. Figure 3
shows 9 subgrids within a coarse resolution grid. The
area of the coarse resolution grid shown in Figure 3
itself is the smallest contributing area for that DEM
resolution. When this area of coarse resolution DEM
is divided by the number of sub grids (i.e. 9 in Figure
3), that together adds up to make the coarse resolution
grid, area of a sub grid as smallest contributing area
for the target DEM resolution is obtained.

Figure 1(a) shows that in a catchment as the
upslope contributing area gets bigger and bigger, the
distribution of the contributing area values given by
coarse and fine resolution DEM at the points
downstream becomes closer and closer; thus the
influence of N; on C; must gradually decrease in
Equation (1). For this reason we introduced influence

factor I, in Equation (1) and /is described as;

“‘ﬁ"”}
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where, N; is the number of the coarse resolution grids
contained in the contributing area at a location 7 in the

catchment, N, is the number of the coarse resolution



—  — —

T

—

e w== At 1000m DEM resolution

At 50m DEM resolution

©
(9
©
—
£ 08
[
E
S 06
S
@
o
“50.4’
c
i)
3
S 02
©
w
0
© I N T 0 © T
S % QG 2N D
o O - ™ o T W

km?).

grids contained in the contributing area at the outlet
of the catchment. H in Equation (2) is introduced as
harmony factor. Considering the influence of N, on C;
in Equation (1) is almost negligible at the outlet of the
catchment, the value of H can be obtained from

Equation (3) as;

N =1 3

Finally, we developed a method to downscale the
upslope contributing area from Equations (1) and (2)

as;

C
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Using Equation (4), the upslope contributing area
is downscaled from 1000m DEM resolution to 50m
DEM resolution. In contrast to Figure 1(a), Figure
1(b) shows the similar distribution of upslope
contributing area from 50m DEM resolution and
downscaled from 1000m DEM resolution to 50m
DEM resolution.

3. Development of Scale Invariance in Surface
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Fig.3 Comparison of flow depth distribution from different DEM resolutions in Kamishiiba catchment (210

Flow Hydrology

3.1 Development of method to downscale flow
variables

A wave is a variation in flow, such as a change in

flow rate or water surface elevation, and the wave

celerity is the velocity with which this variation

travels along the channel. The kinematic wave

celerity, ¢;, can be defined in terms of flow depth by

Equation (5).

)

where S; is the slope and » is the Manning’s
roughness coefficient. y; is the depth of flow and is

expressed as;

_ nQ "

= —=1 6
Vi S,-%B,- (6)

where Q; and B; are the flow rate and channel width
respectively at a point i.

In a distributed system routing the flow is
calculated as a function of space and time through the

system. The Manning’s roughness coefficient » in
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Fig. 4 Comparison of channel width distribution from different DEM resolutions in Kamishiiba catchment (210

km?) (a) without downscaling method introduced (b) with downscaling method introduced.

Equation (5) and (6) is an effective parameter. Figure
3 shows much difference in distribution of depth y;
from 50m DEM resolution and from 1000m DEM
resolution when keeping the same value of
Manning’s roughness coefficient for the 1000m DEM
resolution, identified at 50m DEM resolution (0.025
in Table 1). This scale problem in depth has serious
impact on the hydrologic response of a distributed
routing method (wave characteristics).

The root of this problem originates from the
scale problem on upslope contributing area as
discussed earlier in section 2.1 and in figure 1(a), and
also from the underestimation of slope in coarse
resolution DEM. Upslope contributing area is a key
variable because of its intrinsic capability to describe
the nested aggregation structure embedded in the
fluvial landforms and its important physical
implications (e.g., Rodriguez-Iturbe and Rinaldo,
1997).

(1) Deriving channel width information at finer
scale

In hill slope channel routing, one of the difficult
task is defining the channel width. The channel width
less than the DEM grid resolution used cannot be
obtained. Although the channel width is obtained as a
function of upslope contributing area or discharge as
explained by Leopold and Maddock (1953), the width

of reaches still cannot be obtained where the finer

information of upslope contributing area or discharge
taken as independent variable is filtered out. Here,
channel width is derived as a function of upslope

contributing area as given by Equation (7).

B (7

i i

where B; is the channel width at a location i and C; is
the upslope contributing area at that location. @ and b
are the coefficients. The coefficients ¢ and b are
assigned as 7.0 and 0.4 respectively. In Figure 4 (a) it
is shown that the percentage of smaller width values
is much lesser when using 1000m DEM resolution
then when using 50m DEM resolution. Thus scaled
upslope contributing area from Equation (4) is
introduced in Equation (7). The downscaled channel

width at a location i, Bjs.ueq 1S given as;

= aC b

i scaled iscaled (8)

Table 1. Effective parameter values identified at 50m

DEM resolution in Kamishiiba catchment (210 km?).

Lateral transmissivity of soil at

Manning’s roughness
saturation condition, To
coefficient n
[m%/hr]
9.8 0.025




In Figure 4 (b) it is shown that the
distribution of downscaled channel width from
1000 m DEM resolution to 50m DEM resolution
and that from 50m DEM resolution has matched.
Thus, by using Equation (8) we successfully
obtained the loss portion of channel width at
finer scale, 50m DEM resolution, by using only
coarse resolution DEM, 1000m DEM resolution.

(2) Deriving discharge information at finer scale

As the drainage area increases downstream, the
actual discharges in downstream reaches also
increases. Flow rate Q; is a function of upslope
contributing area (Strahler, 1964).

Discharge values produced by areas smaller than
a grid size in the DEM is completely lost as the larger
sampling dimensions of the grids act as filter. But as
we use finer resolution DEM, the smaller discharge
values - that is the discharge values produced by finer
grid resolution is achieved. Thus as in Equation 4 we
introduced number of sub grids, N,, and influence

factor Ir as the downscaling factors for discharge as

shown in Equation (9).

Qg o = {%iNi)H } ®)

N
N _e ’

s

(3) Deriving flow depth information at finer

scale

Substituting Q; ,B; and S; in Equation (6) by Biscaseq
and Qi from Equations (8) and (9), and by Oyureq
(refer Pradhan et al., 2004 for details of the derivation
of O;.aeq) respectively we develop the method to

downscale the flow depth, v jscueqs as;

nQ %
y iscaled = 1” e (10)

6 . B

scaled iscaled

In Figure 5 (all the simulation results in Figure 5
are made at time step 43 hours of the rainfall event),
it is shown that the distribution of downscaled flow
depth from 1000 m DEM resolution to 50m DEM
resolution and that from 50m DEM resolution
(Manning’s roughness coefficient » used is identified
at 50m DEM resolution, refer Table 1) has matched.
Thus, by using Equation (10) we successfully reduced
the over estimation of depth given by 1000m DEM
resolution (shown in Figure 5).

Several variations of the kinematic wave routing
method have been proposed. These routing methods
can be easily coupled with the proposed downscaling
methods of the dominating geomorphometric
parameters and flow variables to develop a scale

invariant routing method.
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Fig. 5 Comparison of channel flow depth distribution from different DEM resolutions in Kamishiiba catchment

(210 km?) with applying the downscaling method.



3.2 Development of Scale Invariant
Muskingum-Cunge Routing Method

Cunge (1969) proposed that Muskingum method
can be considered an approximate solution of a
modified diffusion equation. The diffusion, implying
the decay of the flood-wave concentration (discharge
or stage) during flood-wave propagation downstream,
can be attributed to the magnitude of the pressure
gradient and inertia terms (Ponce, 1982). In most
practical cases, the inertia term is much smaller than
the pressure-gradient term. The various forms of the
diffusion wave approximation of the St. Venant
equations for flood-wave propagation in open
channels are presented (Keefer and McQuivey, 1974;
Gonwa and Kavvas, 1986). Cunge (1969) established
the link between the Muskingum method and
convection-diffusion equation. He advanced the
interpretation of the Muskingum method as a
finite-difference analog of the kinematic wave
equation, and the numerical diffusion emanating from
its application was linked to the physical diffusion of
the convection-diffusion equation. In flood routing, a
normal rating is implicitly assumed at the
downstream boundary. This assumption may not hold
in many practical cases, in which cases the
downstream boundary condition needs to be specified,
that complicates the routing problem. Specification of
the down-stream routing condition is complicated by
the existence of a hysteresis loop in the rating curve
due to unsteady nature of the flow. Ponce (1991)
argues that these limitations may be overcome by
such practical alternatives as the Muskingum-Cunge
method by tying the numerical diffusion of the
Muskingum method to the physical diffusion of the
diffusion wave model. This permits the solution of
the diffusion wave equation by solving the
Muskingum method, subject to the matching of
numerical and physical diffusivities. This technique

may provide the link between hydrologic and

hydraulic methods of flood routing. Although there
are advantages in adopting the Muskingum-Cunge
routing method to simulate the surface runoff, the
method is seriously influenced by the DEM
resolution used.

The kinematic wave equation is derived from the
continuity equation as;

4. .00 _, (an

ot Ox

and can be expressed in discharge, Q, as the

dependent variable for a channel as;

la_Q+a_Q:0
c Ot Ox

0<x<L  (12)

b

where A is the area of flow cross section, ¢ the travel
speed of the flood wave, called the kinematic wave
speed (celerity).

Cunge  (1969) proposed an  explicit
finite-difference scheme for solution of Equation (12),
which may also serve as a basis for a generalized
treatment of kinematic wave models. The scheme
centers the time derivative by taking weighting factor
in time direction=0.5 and retains the weighting
coefficient x in space. The celerity c is taken to be an
average constant value for the reach or computational

cell as;

where <> signifies the average.

Equation (12) can be written in finite-difference form

as;

Llo-xNoy -0l )+l -0

oA ol -0/ +oi' -0 ]=0 (14)

b
2Ax

By solving for Q;.;, Equation (14) can be written as
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Fig. 6 Comparison of wave celerity distribution from different DEM resolutions in Kamishiiba catchment

(210 km?) (a) without downscaling method for kinematic wave celerity (b) with downscaling method for

kinematic wave celerity.

the classical Muskingum equation, as;

Qij:;l = C]Qij + CzQin +C, i{rl (15)
o, Q,=C0 +C0,+C0;

where _ Ar+2xK (16a)

'2K(1-x)+ At
 A-K (16b)

P2K(1-x)+Ar
C,= 2K(1-x)-At (169)

2K(1-x)+ At
and K= Ax 17
c

where K is the flood travel time over a reach with
length Ax

C+Cy+Ci=1

The unit of K is time, and it has the connotation of
storage delay time, travel time, translation time, or
lag time.

Cunge (1969) has shown that equations (15) to
(17) constitute a second-order approximation of the
diffusion wave equation if the weighting coefficient x
is evaluated as

le(l
2

0

—m] 0<x<0.5 (18)

where 6 is the channel bed slope. Cunge derived
Equation (18) from a Taylor series expansion of O(x;,
;) in the finite-difference form of Equation (12) and a
comparison with the coefficients of the diffusion
wave equation for regular channels. The value of x is
found to depend on Ax (V. P. Singh, 1996).

Earlier we analyzed the scale dependence and
developed the downscaling methods of the
dominating geomorphometric parameters and flow
variable whose propagation characteristics are of
interest in surface flow hydrology. K and x in
Equation (17) and Equation (18) governs the
influence of routing in surface flow hydrologic
response in Muskingum-Cunge routing method. The
flood wave travel time is derived from wave celerity.
The weighting coefficient x in Equation (18) is also
dependent on wave celerity. Thus wave celerity is a
governing factor in Muskingum-Cunge routing
method. The propagation speed or celerity of a flood
wave is one of the main properties of the flood-wave
propagation and is related directly to the wave
deformation and attenuation. Hence an investigation
into scale effect in celerity is essential for deriving
the scale invariance of flood-wave propagation.

In Figure 6 (a) (all the simulation results in

Figures 6 (a) are made at time step 43 hours of the



rainfall event), it is shown that the distribution of
celerity from 1000 m DEM resolution is much biased
as compared with that from 50m DEM resolution
(Manning’s roughness coefficient » used is identified
at 50m DEM resolution).

Substituting y; and S; in Equation (5) by y iscateq
and ... We developed the method to downscale the

wave celerity distribution as.

518, 7 2
c kiscaled = ? ( M] y iscaled /3 (19)

n

In Figure 6 (b) (all the simulation results in
Figures 6 (b) are made at time step 43 hours of the
rainfall event), it is shown that the distribution of
downscaled celerity from 1000 m DEM resolution to
50m DEM resolution, by using Equation (19), and
that from 50m DEM resolution (Manning’s roughness
coefficient n used is identified at 50m DEM
resolution) has matched. Thus, by using Equation
(19) we successfully reduced the over estimation of
celerity given by 1000m DEM resolution.

Substituting ¢ of Equation (17) by cjscareq from
Equation (19) the downscaling method of K is

defined as:

Ax 20
K iscaled ( )
iscaled

Substituting ¢ in Equation (18) by cCicmeq from
Equation (19); B in Equation (18) by Bjsueqs from
Equation (8) and 6 by 8;s.ueq (derivation of Gyreq 1S
presented in Discussion) the downscaling method of x

is defined as:

Q iscaled (2 ! )

X, =—|1-
iscaled B A
2 iscaled eiscaled Ciscaled

Equations (20) and (21) are introduced in

Muskingum-Cunge routing method to develop Scale

Invariant Muskingum-Cunge routing method.

4. RESULTS AND DISCUSSION

It is particularly surface water hydrology that
interacts with geomorphology although recently there
has been an increasing convergence between research
in geomorphology and in groundwater hydrology.
One of the main reasons of this increasing
convergence between research in geomorphology and
in groundwater hydrology is to define processes of
runoff production and to solve the problem of what to
route before deciding how to route (Cordova and
Rodriguéz-Iturbe, 1983). If this argument is accepted
then scale issues in runoff production mechanism
should be solved prior to finding a scale invariance in
surface flow routing mechanism.

In addition to relations between drainage basin
characteristics and basin hydrological response,
geomorphologists have made particular contributions
in the investigation of runoff producing areas and the
dynamic ways in which such areas contribute to the
generation of stream hydrographs, including
headwater drainage systems and the modeling of their
role in runoff production, TOPMODEL (Beven and
Kirkby, 1979). We use TOPMODEL, saturation
excess runoff production mechanism, to generate
overland water quantity for routing.

Figure 7 shows how the DEM resolution effects
on the runoff producing areas. Figure 7 (a) shows 7%
saturated area at 50m DEM resolution. On the other
hand when using 1000m DEM resolution and
parameters identified at 50m DEM resolution, the
saturated area increased to 59%, in Figure 7 (D),
which is physically unacceptable identification of a
conceptual state variable. This results primarily from
the DEM resolution effect on topographic index

distribution (Zhang and Montgomery, 1994).



(a)
Fig. 7 Comparison of saturated area in Kamishiiba catchment (210 km?), at initial state, at different DEM
resolutions. (a) Saturated area 7% at 50m DEM resolution (b) Saturated area 59% at 1000m DEM
resolution. In both the case same parameters identified by 50m DEM resolution TOPMODEL is used.

To solve this problem we coupled TOPMODEL
with the Scale Invariant model for topographic index
distribution (Pradhan et. al. 2004) as defined by
Equation (22):

1 scaled ln Ci (22)
Wi R I es‘caled

where  Tl..qs is the scaled topographic index, C;is
the upslope contributing area of the coarse resolution
DEM and W; is the unit contour length of coarse
resolution DEM, i is a location in catchment. Ry is a

resolution factor defined by Equation (23):

_ Coarse DEM Resolution (23)
T arget DEM Resolution

Ry in Equation (23) is introduced to obtain from the
coarse resolution DEM, the lost of higher density of
the lower value of upslope contributing area per unit
contour length found in finer, target, resolution DEM.
Details of Equation (23) derivation is given in
Pradhan et al. (2004). 6. in Equation (22) is the
downscaled steepest slope of the target resolution
DEM (refer Pradhan et al., 2004a for details of the

derivation of Oyyzeq ).

Legend

- Saturated area

(b)

Figure 8 (b) shows that with scaled topographic
index distribution from 1000m to 50m DEM
resolution, the saturated area obtained dropped down
very close to that obtained at 50m DEM resolution, in
Figure 8 (a). This is how the physical basis of the
model is retained with the scale invariant model.

Figure 9 (a) is the 50m DEM resolution
TOPMODEL simulation. Obviously the simulated
hydrograph from TOPMODEL alone is bias with
observed one with sharp increase in peaks, indicating
quick response to the rainfall and no time delay in the
surface flow hydrologic response (without taking into
account of location of the overland water generated
from the outlet and the time delay). Thus the peak
flows (that signifies the contribution of surface
runoff) are seen ahead of the actual hydrologic
response of the catchment, the observed flow. This
shows the importance of the routing delays in
forming the hydrograph. Figure 9 (b) shows the
simulation result with Muskingum-Cunge routing
method that has smoothened the simulated
hydrograph with 95% Nash efficiency.

Figure 10 shows the simulation results from

1000m DEM resolution. A huge bias in predicted
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Fig. 8 Comparison of saturated area in Kamishiiba catchment (210 km?), at initial state, at different DEM
resolutions. (a) Saturated area 7% at 50m DEM resolution (b) Saturated area 10% when downscaling the
topographic index distribution from 1000m DEM to 50m DEM resolution. . In both the case same
parameters identified by 50m DEM resolution TOPMODEL is used.

simulated discharge, as a consequence of
overestimation of saturated area in Figure 7 (b), is
50m DEM resolution

TOPMODEL parameters, 7o value in Table 1, are

seen when the same

used at 1000m DEM resolution too. In Figure 10, it is
also shown that the similar simulated discharge
condition as shown in Figure 9 (a) is obtained from
the 1000m DEM resolution too by downscaling the

topographic index distribution. Thus scale

independent runoff production mechanism is

successfully obtained.

After obtaining the scale independent runoff
production mechanism, the simulation result also
shown in Figure 11

(a), we applied the

700 -

600 - - = — Simulated discharge at

50m DEM resolution
500 4 without routing
400

300 Observed discharge

Discharge (m3/s)

200 4

100 4

O A i a i
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120
Time (hour)

(a)

Discharge (m3/s)

Muskingum-Cunge routing method with the same

effective value of the Manning’s roughness
coefficient » identified at 50m DEM resolution
Muskingum-Cunge routing method. Figure 11 (b)
shows the routing effect in this case. Obviously, the
routing effect at 1000m DEM resolution shown by
Figure 11 (b) is not as effective as that at 50m DEM
resolution, shown by Figure 9 (b), when applying the
same effective parametric value of n. Figure 11 (b)
clearly lacks the required attenuation effect and the
hydrograph response is still seen quicker than the
actual catchment discharge response.

In scale issues, this lack in the appropriate

attenuation and routing delays in the simulated

800 - — — — - Simulated
700 4 discharge at 50m
Y DEM resolution with
600 1 I\ routing
\
500 1 \! Observed
400 \ discharge

1 9

177 25 33 41 49 57 65 73 81 89 97 105 113

Time (hour)

(b)

Fig. 9 Comparison of observed and the simulated hydrograph at 50m DEM resolution in Kamishiiba catchment

(210 km?). (a) without routing (b) with Muskingum-Cunge routing method.
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Fig. 10 Comparison of simulation result in Kamishiiba catchment (210 km?) from scale independent runoff
production mechanism. In all the simulation results, 50m DEM resolution TOPMODEL identified

parameters are used.

hydrograph originates from reduced travel distance of
the flood wave when the coarse resolution DEM is
used as compared to the travel distance of the flood
wave in the finer resolution DEM. Earlier we
discussed the scale effect in the runoff generation
mechanism. Scale independent runoff generation
mechanism is shown by Figure 8 (b). Analyzing
Figure 8 (a) and 8 (b), it is found that the saturated
area is almost equal but the travel distance for the
water generated in Figure 8 (b) is much shorter than
for the water generated in Figure 8 (a) before
reaching the outlet. This makes us clear that even
after obtaining the scale invariance in runoff
generation mechanism, the saturated area in coarser
DEM resolution is more concentrated closer to the

outlet whereas in finer resolution DEM, the saturated

700 7

6001 | 1000m DEM resolution

500 without routing
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area extends further upslope. Thus the lag time of the
hydrograph response in Figure 8 (b) is much shorter
then in Figure 8 (a). This is why the same effective
parametric value of » that fit the simulated
hydrograph at 50m DEM resolution in Figure 9 (b)
could not produce an appropriate delay in translation
time as shown in Figure 10 (b).

At this point an obvious question that can be
raised is what if the whole catchment is actually
contributing the runoff. If this is the case then every
point in a catchment is producing the runoff either by
saturation excess overland flow mechanism or
infiltration excess overland flow mechanism. In this
case too, we analyzed that the response time of the
flood wave in routing is much delayed when using

fine resolution DEM instead of coarse resolution
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— = — ~ Simulated discharge at
1000m DEM resolution
without downscaling
routing method
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Fig. 11 Analysis of Muskingum-Cunge routing effect in Kamishiiba catchment (210 km?) at 1000m DEM.

(a) simulation result at 1000m DEM resolution from scale independent runoff production mechanism (b)

Adding Muskingum-Cunge routing with Manning’s roughness coefficient identified at 50m DEM

resolution in the simulation result of Figure 9 (b).



Fig. 12 DEM resolution effect in routing from the variation in the routing distance which ultimately effects in

travel time and time of concentration of the flood wave.

DEM. This is clearer from Figure 12. The bold black
lines in Figure 12 shows the points equal or more
than 1 km®. Enlarging the small subcatchment we can
see the fine drainage network that is obtained from
50m DEM resolution. Thus before accumulating the
surface runoff at the points where the contributing
area is equal or more than 1 km? as shown by the bold
black line, the surface runoff has to be routed through
out this finer drainage network. This produces the
routing delay. But on the other hand, this portion of
the routing delay if we take 1000m DEM resolution,
does not take part as the water is instantly
accumulated in a 1 km® of a grid. Thus using 1000m
DEM resolution the routed hydrograph response is
faster as the routed distance is shorter. If the DEM is
infinitely small the routing length is infinitely large
and hence the time of concentration. In this research
we do not come up with a threshold measurement
scale.

From the above discussion it is clear that the

DEM resolution effect in routing arises from the

variation in the routing distance which ultimately
effects in travel time and time of concentration of the
flood wave. In Muskingum-Cunge routing method K
parameter defined by Equation (17) is the flood travel
time over a reach with length Ax, and it has the
connotation of storage delay time, travel time,
translation time, or lag time (Singh, 1996). We
propose a method to downscale this K parameter as
defined by Equation (20). Thus the underestimation
of this travel time is increased by the downscaling
method as shown by Figure (13).

After obtaining the scale independent runoff
routing mechanism  and Scale Invariant
Muskingum-Cunge routing method that we propose
in this paper, we applied it to the simulation process
with the same effective value of the Manning’s
roughness coefficient » identified at 50m DEM
resolution Muskingum-Cunge routing method. Figure
14 (b) shows that the appropriate attenuation and

routing delays has been formed in the simulated

hydrograph. The Nash efficiency increased from 92%
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Fig. 13 Increament of the travel time defined by the Muskingum-Cunge parameter K when the downscaling

method is applied.

in Figure 14 (a) to 94% in Figure 14 (b). Thus, the
similar simulated hydrograph calibrated at 50 m
DEM resolution, in Figure 9 (b), is also obtained
from 1000m DEM resolution, in Figure 14 (b). Thus
the compulsion to increase the effective parametric
value of » when using coarser resolution DEM so that
could compensate the underestimation of travel time
as discussed in Figures 8 and 12 is eliminated with
the downscaling method of routing proposed in this
paper. This has made possible to link » parameter

across scales in a distributed routing method.

5. Conclusion

There is a long tradition in geomorphology of

seeking generalizable rules for landscape evolution
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such that real landscapes, and particularly their
scale-dependent attributes, can be modeled. However,
basin hydrological response in relations with the
geomorphological parameters are influenced by DEM
resolution. In this research we analyzed the scale laws
that govern the relation in digital elevation data
resolution on wupslope contributing area and
developed a mathematical formulation to downscale
the upslope contributing area. The method to
downscale the contributing area is successfully
applied to downscale the flow variables to develope a
scale invariant model in surface flow hydrology. We
coupled these downscaling methods of the flow
variables, whose propagation characteristics are of
interest, in the Muskingum-Cunge routing method

and developed a Scale Invariant Muskingum-Cunge

— == — ~ Simulated discharge at
! 1000m DEM resolution
J \ with downscaling routing
method
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Fig. 14 Analysis of Muskingum-Cunge routing effect in Kamishiiba catchment (210 km?®) at 1000m DEM. (a)

simulation result at 1000m DEM resolution without downscaling the Muskingum-Cunge routing method (b)

simulation result at 1000m DEM resolution with downscaling the Muskingum-Cunge routing method. In both the

case, the effective parametric value of Manning’s roughness coefficient, 7, used is identified at 50m DEM

resolution and with scale independent runoff production mechanism.



routing model. This has enhanced the consistency
across the scales of the DEM resolution dependent
parametric  value like Manning’s roughness
coefficient ». It is hoped that the findings of this
research seek its applicability as a tool to a wider
range of boundary as per the scale problems in
hydrological processes and solution approach is

concerned.
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