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Synopsis

An arbitrary Lagrangian Eulerian (ALE) finite element method is developed for
large deformation problems of saturated soils. A fluidal-elasto-plastic constitutive
equation is employed for the soils. Using an incremental approach, coupled ALE finite
element formulations are derived. To an existing program source code written by
updated Lagrangian scheme, the ALE formulation is implemented by using an operator-
split technique. This operator-split algorithm is composed of a Lagrangian step and an
Eulerian step. The Lagrangian step is a pure updated Lagrangian calculation. The
Eulerian step is performed using mesh smoothing and data transferring schemes. The
proposed method is illustrated by numerical simulation of responses of an embankment

subjected an earthquake motion.
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1. Introduction

Many numerical analysis problems in
geotechnical engineering (e.g., liquefaction induced
large ground displacement, driving of a pile, and
penetration problems) involve large deformation.
Thus it is necessary to take into consideration the
large strain of saturated soils. Usually the
conventional updated Lagrangian finite element
methods are applied to analyze nonlinear response
of saturated soils. However, it is required to pay
particular attention to the mesh characteristics.
When extensive mesh distortion and elements
entanglement arise, the elements may have large
strain within the body, leads to a loss in accuracy,
the Jacobian at some integration points may
approach to =zero and causes ill-conditioned
stiffness matrices. In order to surmount these
deficiencies, an arbitrary Lagrangian Eulerian

(ALE) finite element method was adopted in this
paper.

In finite element analysis of large deformation
problem, two numerical formulations have been
extensively used, the Lagrangian approach and the
Eulerian approach.

In a Eulerian formulation, the relevant
quantities are described with respect to the position
in space coordinate, which is used to label a
material particle in the continuum at present time.
Using the Eulerian description, we can choose a
fixed mesh, but it is difficult to convert and migrate
the material particles on the fixed mesh. Therefore,
it is not appropriate to present the free boundary
condition and simulate the material deformation
history for nonlinear solid mechanics.

In a Lagrangian formulation, relevant
quantities are described with respect to the initial
coordinate (Total Lagrangian) or fixed to the



geometry at the beginning of the time step and
moving with the material (Updated Lagrangian).
When the finite element discretization is
implemented, the configuration of the body is
covered with a mesh. A node is then associated
with the same material particle throughout the
deformation process of the body. The mesh is then
deformed along with the body. Lagrangian
formulation is well suited for problems concerning
path-dependent material with free surface
conditions. If severe mesh distortion and elements
entanglement occur in case of large deformation,
the Lagrangian reference state would be unsuitable
for further step analysis, and leads to less accurate
results or even to an interruption of the calculation.

The ALE method combines the advantages of
the two procedures described above while avoiding
their drawbacks. The general theory of ALE
formulation is based on choosing a reference
configuration, which is independent of both the
material and spatial ones. In an ALE analysis, the
computational reference system (finite element
mesh) is neither attached to the material nor fixed
in space. The mesh is deformed as in Lagrangian
formulation, but independently from the material
body as in Eulerian formulation and keeping the
mesh regularity. Consequently, ALE formulations
can handle path-dependent material behavior and
free surface condition while keeping the mesh
regularity.

The ALE method was first developed in fluid
mechanics. It has been successfully applied to fluid
and structure coupling problems by Belytschko and
Kennedy (1978), and then has been implemented in
finite element analyses of a solid mechanics by
Haber (1982), Hughes et al. (1981), Benson (1989),
Liu et al. (1988, 1991) and Ghost et al. (1991). A
general ALE finite element formulation in
nonlinear solid mechanics has been proposed by
Gadala and Wang (1997, 1998). However, a
general ALE finite element formulation for porous
media has not been well established.

The ALE procedures in the literature can be
divided in coupled and operator-split ALE
formulations. In the first formulation, the fully
coupled Lagrangian-Eulerian equations involving
both material and mesh velocities are solved (Liu et
al., 1991; Gadala and Wang, 1998). In the second
approach, an operator-split scheme is used and the
coupled Lagrangian-Eulerian equations are split
and solved separately (Benson, 1989; Aymone et
al., 2001).

Different from nonlinear solid material,
saturated soil is a two-phase material with a soil
skeleton and a pore fluid phase. It is necessary to
consider the two-phase interaction for ALE
formulation. In this study, a fluidal-elasto-plastic
constitutive model, which was proposed by Moon
and Sato et al. (2000) for saturated soils, is adopted

to simulate liquefaction and following ground flow.
The coupled ALE formulation for fully saturated
soils is derived on the basis of Biot's theory and an
incremental approach. The implementation of the
operator-split ALE method to simulate large
deformation is also presented. Numerical
simulation of an embankment subjected an
earthquake motion is carried out to illustrate the
proposed method.

2. Governing Equations

Saturated soil is a two-phase material with a
soil skeleton and a pore fluid phase. The soil
skeleton is compressible and may be deformed
according to a non-linear constitutive criterion. The
complete Biot equation governing deformable
porous medium can be expressed as:

oy i+ o=V —p'W, =0 (1)

where o is the Cauchy total stress in the
combined solid and fluid mixture, b. the body

force acceleration, ,0f the density of the pore
water, o the apparent density of saturated soils,

V; the velocity of the soil skeleton and W, the

average relative velocity of seepage.

The pore fluid seepage flows through the pores
according Darcy’s law. The generalized Darcy
equation can be written as:

W.
W, =k(— p;+p'b—p'y, —prjj @

where p is the pore pressure (taken positive

when compressive), N the porosity and K the
permeability.

The continuity equation can be expressed as
(Oka et al., 1994; Shibata et al., 1991; Akai and
Tamura, 1978):

n 1-n
W +V.:+|— D=0 3
|,|+ I,I+(Kf+ Ks jp ()

where K°® is the bulk modulus of the solid

material and K" the bulk modulus of the fluid
material.

If the following items are adopted when
formulating the governing equations (Di and Sato,
2004),

[1] The Large strain is considered.



[2] The gradients of In(n) and In(pf)
are so small that their quadratic terms can

2
be ignored and (MJ =0.
OX. |

[3] The u-p formulation is adopted. The
acceleration of fluid phase related to the
soil  skeleton can be  neglected
(Zienkiewicz et al., 1980, 1984).

[4] Soil particles are incompressible.

Then the equilibrium equation of motion for

total mixture of soil skeleton and fluid phase is
simplified as:

Gij'j-i-pbi—p\'/i =0, 4)
and the continuity equation can also be obtained as:

k. Kk n .
—Elii__pr,ii+|ii+FpE:0 (5)

where g is the excess pore pressure and Iij the
symmetric rate of deformation tensor.

3. ALE Kinematics

For the motion and deformation of a body, the
material particles are labeled by the coordinates,

X., at their initial positions at time t =0, the
current positions of these particles are located by
the coordinates, 'X., in the spatial domain at the

i
time t. In the ALE description, a referential
domain, which composed of the coordinates y;
of grid points of mesh at the time t, is employed
to describe state variables. Define that U; and V;
are the displacement and velocity of the soil
skeleton, U; and V; are the displacement and
velocity of the mesh grid on the material. The soil
skeleton displacement U, and the mesh grid

displacement U, on the material have the

1
following values:

u="% — X; (6)
U, =txi —Xi (7

The material velocity V, and the mesh

velocity \7i can be obtained by differentiating the

equations of material motion and mesh motion
presented previously with respect to time while

keeping the particle Xj or the mesh grid point

x; fixed. A convective velocity C; should be

introduced to mapping the convective effects
between the material and grid, and is denoted as:

c =V, -V, €)

In the ALE formulation, the acceleration of
mesh grid is not important. So only the material

accelerations @ and @ are needed, it can be
expressed respectively as:

a _ M 9)
i ot Y

a _ M (10)
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a _ M +V v, (11)
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a =4a+c¢C v, (12)
SRR atx,. '

Taking a function f defined on the current
configuration according to the spatial coordinates

X i the f can be stress, strain or any state
variables. The material, spatial and ALE
computational referential time derivative of

function f can be expressed as:

of of of
=—] =— i (13)
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From Egs. (15) and (13), the referential
derivative f' can be related to the material

derivative f by:

f=f'+c
o',

(16)

Let the volume dV in spatial configuration be



the image of a volume dV in material
configuration, we get:

dv =JdV (17)
X,
o'x.

J

where J = det

Using the mass density o of dv and the

mass density p, of dV , the classical mass
conservation equation is:

p=3"p, (18)

The material derivative form of this equation
gives:

‘ (19)

p==p

In the ALE formulation, the corresponding
referential derivative of mass density can be
obtained as:

N Op
P =Py J'8txj

(20)

4. Constitutive Relationships

A fluidal-elasto-plastic constitutive model has
been proposed to model the nonlinear behavior of
saturated soils (Moon, Sato and Uzuoka, 2000).
The constitutive model combines an effective
cyclic elasto-plastic model (Oka et al., 1999) with
the Newtonian viscous fluid model, and uses a
coefficient « to control phase changes. It is able
to describe liquefaction of saturated soils and
following ground flow. The « has been proposed
by Moon et al. (2000) in the following form:

o= ae[b[l‘z"m"j ] (21)

where o, is mean effective stress, o, is the

initial mean effective stress, a and b are the
constant parameter for the material.

Since large deformation is considered, the
Jaumann stress, which gives an objective measure
of stress, is adopted here.

)
O =0y — Oy @j — O jy Oy (22)

where oy is the rate of stress, @ is the skew

symmetric spin tensor.
Then the fluidal-elasto-plastic constitutive
model can be expressed in the present formulation:

6 =(l-a)o;’ +acy - po; (23)

. J . .
where G is the Jaumann stress, G

stress which is evaluated by the effective cyclic

is the

elasto-plastic model (Oka et al., 1999), &' is the

stress which can be obtained using the Newtonian

viscous fluid model, &; the Kronecker delta. We

get:
&) =(1-a)DX,|

ijkm "km

+al iy s, +24,)- ps

ij

(24)

where 4 and A are the viscous efficients,
D:?

ijkm
cyclic elasto-plastic constitutive model.
Using Eqg. (16), the grid time derivative of the
stress is written as:

is the elasto-plastic tensor of the effective

.. 00
o =6 — (Ve =V, E
:ﬂ—aﬂﬁmm+aQM%+2MJga

+ 0,0y + 0,0,

oo,
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Equation (25) shows that the grid time
derivative of the stress is found using the Jaumann
stress rate, and the fluidal-elasto-plastic constitutive
model can be employed without further
modification in the ALE finite element analysis.

5. The Coupled ALE Formulations

Using an incremental approach, coupled ALE
finite element formulations for saturated soils are
derived in this section.

Within an ALE analysis, the finite element
mesh is neither attached to the material nor fixed in
space. It has a motion, which is independent of the
material. Two sets of coordinate systems have to be
defined. As shown in Fig. 1, one coordinate system

is attached to a material point, 'PM and moving



to "MPM with material deformation, another is

corresponded to a computational referential grid,

'PS | which moves to "“'P® independently

according to a user-defined mesh motion. In an
incremental approach analysis, it is assumed that
the configuration at time t is known on the
material domain, which is equal to the
computational referential domain. In a Lagrangian
formulation the computational domain is equal to
the material domain at the configuration of time
t+At. In an ALE formulation the computational
domain is formed by the displacement of all grid
points, and not necessarily equal to the material
domain at the configuration of time t+At. The
deformation and the values of the state variables at
time t+ At have to be calculated on the new
computational domain. In this paper, left
superscripts of a quantity indicate the configuration
at which the quantity occurs. Left subscripts
indicate the configuration with respect to which the
quantity is measured, and may not used if it is same

Configuration at time t+At

‘P —» Path of a material point

===~ path of a grid point

Configuration at time t
to the configuration at which the quantity occurs.

Fig. 1 Material point and mesh grid movements in
ALE formulation

Although the mesh and material motions are
independent from each other, there exists a one-to-
one mapping between material and computational
domains. The boundaries of the two domains
should coincide, requiring that:

(v, =¥, )n; =0 on the boundary. (26)
where N, is the normal vector at any point on the

boundary.

Because the incremental approach is used, all
guantities in the governing equations of saturated
soils should be transformed into the known

configuration at time t. During the transformation,
each quantity should be related to the

computational coordinate system ;. The A

are related to the coordinate 'X; through:

Aty by 40 27
From Eq. (27), we can get:
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=1 28
0'X, o'x. %)
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The symmetric rate of the deformation tensor

t+At|ij referred to the configuration at time

t+ At is defined by:

1 8Vi ov j

t+Atli] T A
Rl B atmtxj at+AtXi

(30)

Using Eg. (29), the variation of the strain
tensor can be obtained as (Gadala et al., 1998):

s oL o o', OV 0%,
t+AL ) 2 atxk at+Ath atxk at+AtXi
(31)
sy L[ a0, o a6, o,
~0y i 72| 9% %, | o'x. o'
j k i k

The volume element d"*V can be related
to d'V through:

80'( 1
dVv (32
, ) (32)

4 =d' + (dV ) At = (Lt

Similarly, the boundary surface element
d" ™A canberelatedto d'A through:



d'" ™A ~d'A+(d! )

(33)
8 n,)dVv

=

where ‘n; is the normal vector of d'A.

t+At

Using Eq. (16), the Cauchy stress Oy can
be expressed as:
oo+ ofAt
oy oyate (G —u) 201
=o;+ o At+ (U, —U, )——
ij ij k k ath
Similarly, the water pore pressure At p may

be expressed in terms of the material time
derivative ' P of pore pressure as follows:

t+At pztp‘i‘tp,At
. - o'p (35)
='p+'pAt + (G, — U, ) ——
k
The material derivative "

pressure may be written as:

P of pore water

t+At

t+At p:I+Atpr + (Vk _ Ok) — p
0" X,
t+At p p at+Atp (36)
+ (Vi Vo)
At 07X,
Using Eqg. (29), we can get:
+ + t
at Atp _ at Atp a Xj
t+At +
oMy d'%; 0™,
@37

_ at+A1p B aa] at+Atp
% 0% 0%,
From Eq. (20), the mass densities between the

configurations at time t+ At andtime t may be
expressed as:

t+Atpztp+t+AtplAt
R t 38
oV. Af — ( I Ui) 8tp ( )
0'X; 0X;

The equilibrium of body should be satisfied at
time t+ At and the weak formulation of equation

(4) obtained is:

J‘Hm t+Atpai5Vidt+AtV
' (39)

t+At t+Ab t+At
+ traty Jij §t+At| ij d V= R

where "R is the external work done by the
applied body forces and tractions. Let ““*'B, be

the force acceleration per unit volume and “"*'T.

the traction, then "R is:

t+At _ t+At t+At
R= .., “Tovd"A

i J‘[ -y t+At pt+A’[Bi 5Vidt+mv (40)

Using the above equations and applying Gauss
theorem, the linearized form of the equilibrium
equation takes the form:

[, PadvdV —[ At'pd svk Sv.d'V
t o 8Vi t
_J-‘v P(Vk_Vk)%é‘VidV

+ [, foyoldV + [ ‘o AtsldV

thij tUij

(41)
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k
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_-[‘v ‘(G _uk)tBi5[atX jdtV (42)

k
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mt mn

Using a kind of finite volume method proposed
by Oka et al. (1994) and Akai et al. (1978), and



integrating the continuity Eqg. (5) for an element
volume "V, we obtain:

J‘ |dt+AtV n I+AtludtJrAtV
r+AtV ax t+A[V
(43)
n J‘Hmv an t+At pd t+AtV -0
where
k at+Atp s ‘.
i :7/_W[_ atmtxi +p t AtBi =PV |(44)

Using Gauss theorem, we obtain the linearized
form of the continuity equation:

; 8t+At
(J‘ p HAtBndAe J‘ i tAe
at+Atp auk A
dt _ f ) -dt
JAAE axk at | Ae J’t'%p alnl Ae
__[ p' (v =V, j
(49)
+ v, —dV,
tV at
n trat, t a0, ) 4
+ - dVv
A I OO P p)[ ‘xk] ‘
PR
j (v, — pdtV =0

Equations (41), (42) and (45), together with the
constitutive equation Eq. (25), will define a
coupled set of ALE formulations for saturated soils.
Pore water pressure and two sets of displacements,
those of the material points and the mesh grid, are
the three basic unknown variables. If the classical
isoparametric is considered and the three unknown
variables are expressed in their grid point values,
the coupled ALE formulations proposed can be
discretized by the standard finite element procedure.

6. The Operator-split ALE Method

The coupled ALE equations for saturated soils
are complicated and no easily solved. An
alternative method is referred to as an operator-split
technique (Benson, 1989; Aymone et al., 2001),
which is adopted in this section. The operator-split
method consists of two steps, a Lagrangian step

and an Eulerian step. First, the reference system
(finite  element mesh) follows the material
deformation in the Lagrangian step, and a pure
updated Lagrangian procedure step is done.
Secondly, mesh smoothing is performed and the
reference system is changed as desired. The
solution then is remapped from the Lagrangian
mesh to the new reference mesh to complete the
Eulerian step.

6.1 The Lagrangian step

The Lagrangian step is a classical Lagrangian
formulation calculation. On the base of the FE-FD
hybrid method (Oka, 1994; Shibata et al. 1991,
Akai et al., 1978), a large strain analysis program
for saturated soils has been developed using the
updated Lagrangian method (Di and Sato, 2004).
The Lagrangian step of the operator-split ALE
method can be easily implemented in the existing
Lagrangian program source codes for large
deformation problem.

Using the finite element method, standard
finite element approach procedure is used for the
equilibrium equation Eq. (39). Finally render the
first coupled equation in the matrix form:

Ml + KAuy +Gpg =T (46)
where Pg is the excess pore pressure values of

elements, U, the displacement vector at the

nodes, M the mass matrix, K the total
stiffness matrix including a material stiffness part
and a geometrical one, G makes up the coupling
matrix, and T is the total load vector.

Employing the FE-FD hybrid method, the
second coupled equation in the matrix form is
obtained from the continuity equation Eq. (43).

f
f T /4 T
p Gl . G u, )

- HpEN + ApEN =0

6.2 The Eulerian step
(1) Mesh smoothing

Various methods such as h-adaptivity, p-
adaptivity and r-adaptivity techniques have been
proposed for remeshing structure. The h-adaptivity
method changes the mesh connectivity through
addition of elements. The p-adaptivity method
enhances the polynomial interpolation space in
high strain location regions. The r-adaptivity
method refines the mesh by relocation of nodes.



Because of large deformation, mesh refinement
should be performed at almost every time step. In
order to avoid complicated computation, the mesh
smoothing scheme in this paper moves nodes as in
the r-adaptivity method. Unlike the classical
remeshing techniques, the mesh smoothing
procedure is performed while the topology of the
initial mesh can be preserved. It is explicit, cheap
and needs less computational efforts.

Fig. 2 Relocation of the node

We here decide how to move the reference
system. The element nodal pattern is defined by
creating a new mesh of the deformed body
according to the element shape and the mesh
smoothing scheme.

The total volume of elements surrounding a

node, V; , is:
Ve =)V, (48)
i-1

where V, is the volume of element i, N, the

number of elements surrounding the node. For each
element 1, the coordinates of its gravity center are:

1 n; Ny

C M G

XP == x4 xS (49)
n j=1 j=nn

n

where N is the number of nodes in the element

i, n"» the number of unrelocated nodes in the

element i, x™ " is the nodal coordinates.

j
The relocated coordinates of the node then is
calculated as (See Fig. 2):

1 (<
x¢ :V—T[;x?VjJ (50)

The boundaries of the new mesh and those of
the old mesh obtained at the end of the updated
Lagrangian step must coincide at each step. The
boundary points may only move in the tangential
direction with a displacement different from the
material displacement.

(2) Transferring state variables

While the reference configuration changes to
the new mesh pattern, the state variables (stress,
strain etc.) obtained in the updated Lagrangian step
are frozen. The state variable fields are then
remapped onto the new reference configuration
(new mesh) from the material configuration (the
old mesh). The aim of this step is to solve Eq. (16)
by a local least-squares smoothing method in
Hinton et al. (1974) and Aymone et al. (2001).

In the updated Lagrangian step, state variable
fields of elements are usually calculated at Gauss
points. The values should be transferred to the
Gauss points of the new finite element mesh (see
Fig. 3). Because mesh smoothing is carried out at
each time step, the distance between the non-
remeshed and remeshed Gauss points is small and
any lack of equilibrium on the new mesh can be
overcome in the next step. The known values of

state variable at Gauss point, fGMP, can be related

to the values at nodes, f,' , as:

Ny

M M M
fop = Z(¢a fN,a): ofy (51)
a=1
where ¢ is the interpolation function matrix
evaluated at Gauss points and fNNfa the value of a
state variable f at the node « of the material

configuration.

Material configuration

_____ - - - - Referential configuration

Material Gauss point

New Gauss point

Fig. 3 Gauss points on the material and the new
referential configurations

Inverting Eqg. (51), the values at nodes are
obtained.

fi' =o' (52)



The gradient of the state variable near the
material Gauss point is calculated as:

afehg — afehg a‘);:J'
x 2

(33)
i 7\ 0g; X,
oAy (04, . u ,
where =z < f , ¢, is the

N,a
aé:j a=1 6/:]
interpolation function, &; the natural coordinates
of element.

OF.
The term, 8_)5(1 in Eq. (53), can be calculated

by inverting %:Z %Xmi
9g; w1\ 0¢

Because the distance between the old and new
meshes is small, the state variable at Gauss point of
the referential configuration is calculated by:

of o
fep = fap + (Xgp — Xp ) =2
GP GP ( GP GP) 8X

(54)

where X, is the coordinates of Gauss point on

new mesh, X(’\BAP the coordinates of the non-

remeshed Gauss point.

All state variables, including the nonlinear path
dependent material variables, should be transferred
from the old mesh to the new one.

7. Numerical Example

Using updated Lagrangian scheme, a large
deformation analysis program for saturated soils
has been developed (Di and Sato, 2004). Based on
this existing program source code, the operator-
split ALE method described in the preceding
sections was implemented. With this program,
numerical simulation of an embankment subjected
to earthquake motion was carried out. The
embankment was considered to be a plane strain
problem. Infinite elements were used for the lateral
boundary sides. The bottom was impermeable
while the ground surface a drainage boundary. The
fluidal-elasto-plastic constitutive model presented
in Section 4 was used for the saturated soils. The
initial finite element mesh of the slope is shown in

Fig. 4. The input motion is the strong motion
record observed at Port Island, Kobe during the
Hyogoken-Nanbu earthquake in 1995, as shown in
Fig. 5.

When the updated Lagrangian formulation was
used to compute the seismic response of the
embankment, some element volumes were turned
to negative values due to severe distortion at time

F—=m E :

[
v

Fig. 4 Initial finite element mesh of
an embankment
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Fig. 5 Input motion

Fig. 6 The deformed mesh at time 5.1s (The updated
Lagrangian method)

5.1s (See Fig. 6). So stability of computation was
destroyed and the program has to be stopped.

In the simulation with the arbitrary Lagrangian
Eulerian formulation, the finite element mesh was
kept smooth at time 5.1s (See Fig. 7) and the
calculation could easily be continued. The
deformed configurations at time 10.0s and after the
earthquake are shown in Figs. 8 and 9, in which the
scale of deformation is the same as that of the finite



element mesh. The time histories of horizontal and
vertical displacement on point P are shown in Fig.
10. The shear stress-strain relationship and stress
paths in element E are shown in Fig. 11.

Fig. 7 The deformed mesh at time 5.1s (The ALE
method)

8. Conclusions

Due to extensive mesh distortion and elements
entanglement in simulating large deformation
problem, numerical difficulties and loss in accuracy
caused by conventional Lagrangian finite element

solution variables are transferred from the
Lagrangian mesh to the new mesh. The Eulerian
step is performed using mesh smoothing and data
transferring schemes in this paper. The proposed
method for large deformation analysis is illustrated
by a numerical example of embankment subjected
earthquake motion. The example shows that the
proposed scheme can overcome numerical
difficulties caused by severely distortion and
entanglement of elements, which often occurs in

Fig. 9 The deformed mesh after the earthquake
(The ALE method)

formulations arise. The ALE finite element method
can be utilized to overcome these difficulties.

In this paper, a coupled ALE formulation for
saturated soils is derived on the basis of Biot's two-
phase theory and an incremental approach.
Jaumann stress rate is employed as an objective
measure of stress rate to consider large deformation.
The grid time derivative of stress is found using the
Jaumann stress rate, and a fluidal-elasto-plastic
constitutive model of saturated soils can be adopted
without further modification in the ALE finite
element analysis. The proposed ALE formulations
consist of an equilibrium equation and a continuity
equation. Pore water pressure and two sets of
displacements, those of the material points and the
mesh grid, are the three basic unknown variables.
The coupled ALE formulation can be discretized by
standard finite element procedure.

To an existing program source code written by
the updated Lagrangian scheme, the operator-split
ALE method is implemented. This algorithm is
composed of two steps, a Lagrangian step and an
Eulerian step. In the Lagrangian step a classical
updated Lagrangian formulation calculation is done,
whereas the finite element mesh moves with the
material. In the Eulerian step, remeshing of the
deformed body is conducted as desired and the

Fig. 8 The deformed mesh at time 10.0s (The ALE

method)
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large deformation analyses by the classical updated
Lagrangian formulation.
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