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Synopsis 
     An arbitrary Lagrangian Eulerian (ALE) finite element method is developed for 
large deformation problems of saturated soils. A fluidal-elasto-plastic constitutive 
equation is employed for the soils. Using an incremental approach, coupled ALE finite 
element formulations are derived. To an existing program source code written by 
updated Lagrangian scheme, the ALE formulation is implemented by using an operator-
split technique. This operator-split algorithm is composed of a Lagrangian step and an 
Eulerian step. The Lagrangian step is a pure updated Lagrangian calculation. The 
Eulerian step is performed using mesh smoothing and data transferring schemes. The 
proposed method is illustrated by numerical simulation of responses of an embankment 
subjected an earthquake motion. 
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1. Introduction 
 
 Many numerical analysis problems in 
geotechnical engineering (e.g., liquefaction induced 
large ground displacement, driving of a pile, and 
penetration problems) involve large deformation. 
Thus it is necessary to take into consideration the 
large strain of saturated soils. Usually the 
conventional updated Lagrangian finite element 
methods are applied to analyze nonlinear response 
of saturated soils. However, it is required to pay 
particular attention to the mesh characteristics. 
When extensive mesh distortion and elements 
entanglement arise, the elements may have large 
strain within the body, leads to a loss in accuracy, 
the Jacobian at some integration points may 
approach to zero and causes ill-conditioned 
stiffness matrices. In order to surmount these 
deficiencies, an arbitrary Lagrangian Eulerian 

(ALE) finite element method was adopted in this 
paper.  
 In finite element analysis of large deformation 
problem, two numerical formulations have been 
extensively used, the Lagrangian approach and the 
Eulerian approach.  
 In a Eulerian formulation, the relevant 
quantities are described with respect to the position 
in space coordinate, which is used to label a 
material particle in the continuum at present time. 
Using the Eulerian description, we can choose a 
fixed mesh, but it is difficult to convert and migrate 
the material particles on the fixed mesh. Therefore, 
it is not appropriate to present the free boundary 
condition and simulate the material deformation 
history for nonlinear solid mechanics.  
 In a Lagrangian formulation, relevant 
quantities are described with respect to the initial 
coordinate (Total Lagrangian) or fixed to the 



 

 

geometry at the beginning of the time step and 
moving with the material (Updated Lagrangian). 
When the finite element discretization is 
implemented, the configuration of the body is 
covered with a mesh. A node is then associated 
with the same material particle throughout the 
deformation process of the body. The mesh is then 
deformed along with the body. Lagrangian 
formulation is well suited for problems concerning 
path-dependent material with free surface 
conditions. If severe mesh distortion and elements 
entanglement occur in case of large deformation, 
the Lagrangian reference state would be unsuitable 
for further step analysis, and leads to less accurate 
results or even to an interruption of the calculation.  
 The ALE method combines the advantages of 
the two procedures described above while avoiding 
their drawbacks. The general theory of ALE 
formulation is based on choosing a reference 
configuration, which is independent of both the 
material and spatial ones. In an ALE analysis, the 
computational reference system (finite element 
mesh) is neither attached to the material nor fixed 
in space. The mesh is deformed as in Lagrangian 
formulation, but independently from the material 
body as in Eulerian formulation and keeping the 
mesh regularity. Consequently, ALE formulations 
can handle path-dependent material behavior and 
free surface condition while keeping the mesh 
regularity. 
 The ALE method was first developed in fluid 
mechanics. It has been successfully applied to fluid 
and structure coupling problems by Belytschko and 
Kennedy (1978), and then has been implemented in 
finite element analyses of a solid mechanics by 
Haber (1982), Hughes et al. (1981), Benson (1989), 
Liu et al. (1988, 1991) and Ghost et al. (1991). A 
general ALE finite element formulation in 
nonlinear solid mechanics has been proposed by 
Gadala and Wang (1997, 1998). However, a 
general ALE finite element formulation for porous 
media has not been well established.  
 The ALE procedures in the literature can be 
divided in coupled and operator-split ALE 
formulations. In the first formulation, the fully 
coupled Lagrangian-Eulerian equations involving 
both material and mesh velocities are solved (Liu et 
al., 1991; Gadala and Wang, 1998). In the second 
approach, an operator-split scheme is used and the 
coupled Lagrangian-Eulerian equations are split 
and solved separately (Benson, 1989; Aymone et 
al., 2001).  
 Different from nonlinear solid material, 
saturated soil is a two-phase material with a soil 
skeleton and a pore fluid phase. It is necessary to 
consider the two-phase interaction for ALE 
formulation. In this study, a fluidal-elasto-plastic 
constitutive model, which was proposed by Moon 
and Sato et al. (2000) for saturated soils, is adopted 

to simulate liquefaction and following ground flow. 
The coupled ALE formulation for fully saturated 
soils is derived on the basis of Biot's theory and an 
incremental approach. The implementation of the 
operator-split ALE method to simulate large 
deformation is also presented. Numerical 
simulation of an embankment subjected an 
earthquake motion is carried out to illustrate the 
proposed method. 
 
2. Governing Equations 
 
 Saturated soil is a two-phase material with a 
soil skeleton and a pore fluid phase. The soil 
skeleton is compressible and may be deformed 
according to a non-linear constitutive criterion. The 
complete Biot equation governing deformable 
porous medium can be expressed as: 
 
  (1) 0, =−−+ i

f
iijij wvb ρρρσ

 
where ijσ  is the Cauchy total stress in the 

combined solid and fluid mixture,  the body 

force acceleration,  the density of the pore 
water, 

ib
fρ

ρ  the apparent density of saturated soils, 

 the velocity of the soil skeleton and  the 
average relative velocity of seepage. 
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 The pore fluid seepage flows through the pores 
according Darcy’s law. The generalized Darcy 
equation can be written as:  
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where p  is the pore pressure (taken positive 
when compressive),  the porosity and  the 
permeability. 
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 The continuity equation can be expressed as 
(Oka et al., 1994; Shibata et al., 1991; Akai and 
Tamura, 1978): 
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where sK  is the bulk modulus of the solid 
material and fK  the bulk modulus of the fluid 
material. 
 If the following items are adopted when 
formulating the governing equations (Di and Sato, 
2004), 

[1] The Large strain is considered.  



 

 

[2] The gradients of  and ( )nln ( )fρln  
are so small that their quadratic terms can 

be ignored and 
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[3] The u-p formulation is adopted. The 
acceleration of fluid phase related to the 
soil skeleton can be neglected 
(Zienkiewicz et al., 1980, 1984). 

[4] Soil particles are incompressible. 
 Then the equilibrium equation of motion for 
total mixture of soil skeleton and fluid phase is 
simplified as: 
 
 0, =−+ iijij vb ρρσ , (4) 

 
and the continuity equation can also be obtained as: 
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where  is the excess pore pressure and  the 

symmetric rate of deformation tensor. 
Ep ijl

 
3. ALE Kinematics 
 
 For the motion and deformation of a body, the 
material particles are labeled by the coordinates, 

, at their initial positions at time , the 
current positions of these particles are located by 
the coordinates, , in the spatial domain at the 
time . In the ALE description, a referential 
domain, which composed of the coordinates 

iX 0=t

i
t x

t
iχ  

of grid points of mesh at the time , is employed 
to describe state variables. Define that  and  
are the displacement and velocity of the soil 
skeleton,  and  are the displacement and 
velocity of the mesh grid on the material. The soil 
skeleton displacement  and the mesh grid 

displacement  on the material have the 
following values: 
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 The material velocity  and the mesh 

velocity  can be obtained by differentiating the 
equations of material motion and mesh motion 
presented previously with respect to time while 

keeping the particle  or the mesh grid point 

iv

iv̂

jX

jχ  fixed. A convective velocity  should be 

introduced to mapping the convective effects 
between the material and grid, and is denoted as: 
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 In the ALE formulation, the acceleration of 
mesh grid is not important. So only the material 
accelerations  and  are needed, it can be 
expressed respectively as: 
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 Taking a function f  defined on the current 
configuration according to the spatial coordinates 

, the  can be stress, strain or any state 

variables. The material, spatial and ALE 
computational referential time derivative of 
function  can be expressed as: 
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 From Eqs. (15) and (13), the referential 
derivative f ′  can be related to the material 

derivative  by: f
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 Let the volume  in spatial configuration be dv



 

 

the image of a volume  in material 
configuration, we get: 
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 Using the mass density ρ  of  and the 

mass density 

dv

0ρ  of , the classical mass 
conservation equation is: 

dV
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 The material derivative form of this equation 
gives: 
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 In the ALE formulation, the corresponding 
referential derivative of mass density can be 
obtained as: 
 

 
j

tj
i

t
i

x
c

x
v

∂
∂

−
∂
∂

−=′
ρρρ  (20) 

 
4. Constitutive Relationships 

 
 A fluidal-elasto-plastic constitutive model has 
been proposed to model the nonlinear behavior of 
saturated soils (Moon, Sato and Uzuoka, 2000). 
The constitutive model combines an effective 
cyclic elasto-plastic model (Oka et al., 1999) with 
the Newtonian viscous fluid model, and uses a 
coefficient α  to control phase changes. It is able 
to describe liquefaction of saturated soils and 
following ground flow. The α  has been proposed 
by Moon et al. (2000) in the following form: 
 

 
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′
′

−

= 0
1

m

mb

ae σ
σ

α  (21) 
 
where mσ ′  is mean effective stress, 0mσ ′  is the 

initial mean effective stress,  and  are the 
constant parameter for the material. 

a b

 Since large deformation is considered, the 
Jaumann stress, which gives an objective measure 
of stress, is adopted here.  
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where ijσ  is the rate of stress, ijω  is the skew 

symmetric spin tensor. 
 Then the fluidal-elasto-plastic constitutive 
model can be expressed in the present formulation: 
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where  is the Jaumann stress,  is the 

stress which is evaluated by the effective cyclic 
elasto-plastic model (Oka et al., 1999),  is the 

stress which can be obtained using the Newtonian 
viscous fluid model, 
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ijδ  the Kronecker delta. We 

get: 
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where µ  and λ  are the viscous efficients, 

 is the elasto-plastic tensor of the effective 

cyclic elasto-plastic constitutive model. 
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 Using Eq. (16), the grid time derivative of the 
stress is written as: 
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 Equation (25) shows that the grid time 
derivative of the stress is found using the Jaumann 
stress rate, and the fluidal-elasto-plastic constitutive 
model can be employed without further 
modification in the ALE finite element analysis. 
 
5. The Coupled ALE Formulations 
 
 Using an incremental approach, coupled ALE 
finite element formulations for saturated soils are 
derived in this section. 
 Within an ALE analysis, the finite element 
mesh is neither attached to the material nor fixed in 
space. It has a motion, which is independent of the 
material. Two sets of coordinate systems have to be 
defined. As shown in Fig. 1, one coordinate system 
is attached to a material point, Mt P , and moving 



 

 

to Mtt P∆+  with material deformation, another is 
corresponded to a computational referential grid, 

Gt P , which moves to Gtt P∆+  independently 
according to a user-defined mesh motion. In an 
incremental approach analysis, it is assumed that 
the configuration at time t  is known on the 
material domain, which is equal to the 
computational referential domain. In a Lagrangian 
formulation the computational domain is equal to 
the material domain at the configuration of time 

. In an ALE formulation the computational 
domain is formed by the displacement of all grid 
points, and not necessarily equal to the material 
domain at the configuration of time . The 
deformation and the values of the state variables at 
time  have to be calculated on the new 
computational domain. In this paper, left 
superscripts of a quantity indicate the configuration 
at which the quantity occurs. Left subscripts 
indicate the configuration with respect to which the 
quantity is measured, and may not used if it is same 

to the configuration at which the quantity occurs. 
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Fig. 1 Material point and mesh grid movements in 

ALE formulation 
 
 Although the mesh and material motions are 
independent from each other, there exists a one-to-
one mapping between material and computational 
domains. The boundaries of the two domains 
should coincide, requiring that: 
 
  on the boundary. (26) ( ) 0ˆ =− iii nvv
where  is the normal vector at any point on the 
boundary. 
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 Because the incremental approach is used, all 
quantities in the governing equations of saturated 
soils should be transformed into the known 

configuration at time . During the transformation, 
each quantity should be related to the 
computational coordinate system 
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are related to the coordinate  through:  
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 From Eq. (27), we can get: 
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 The symmetric rate of the deformation tensor 

 referred to the configuration at time ijtt l∆+

tt ∆+  is defined by: 
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 Using Eq. (29), the variation of the strain 
tensor can be obtained as (Gadala et al., 1998): 
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 The volume element  can be related 
to  through: 
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 Similarly, the boundary surface element 

 can be related to  through: Ad tt ∆+ Ad t
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where  is the normal vector of . i
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 Using Eq. (16), the Cauchy stress  can 

be expressed as:  
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 Similarly, the water pore pressure  may 
be expressed in terms of the material time 
derivative  of pore pressure as follows:  
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 The material derivative  of pore water 
pressure may be written as: 
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 Using Eq. (29), we can get: 
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 From Eq. (20), the mass densities between the 
configurations at time tt ∆+  and time  may be 
expressed as:  

t

 

 ( )
j

t

t

ii
i

t
itt

ttttt

x
uut

x
v

t

∂
∂

−−∆
∂
∂

−=

∆′+≈ ∆+∆+

ρρρ

ρρρ

ˆ
 (38) 

 
 The equilibrium of body should be satisfied at 
time , and the weak formulation of equation 

(4) obtained is: 
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where Rtt ∆+  is the external work done by the 
applied body forces and tractions. Let  be 

the force acceleration per unit volume and  

the traction, then 
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 Using the above equations and applying Gauss 
theorem, the linearized form of the equilibrium 
equation takes the form: 
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 Using a kind of finite volume method proposed 
by Oka et al. (1994) and Akai et al. (1978), and 



 

 

integrating the continuity Eq. (5) for an element 
volume , we obtain: e
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where 
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 Using Gauss theorem, we obtain the linearized 
form of the continuity equation: 
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 Equations (41), (42) and (45), together with the 
constitutive equation Eq. (25), will define a 
coupled set of ALE formulations for saturated soils. 
Pore water pressure and two sets of displacements, 
those of the material points and the mesh grid, are 
the three basic unknown variables. If the classical 
isoparametric is considered and the three unknown 
variables are expressed in their grid point values, 
the coupled ALE formulations proposed can be 
discretized by the standard finite element procedure. 
 
6. The Operator-split ALE Method 

 
 The coupled ALE equations for saturated soils 

are complicated and no easily solved. An 
alternative method is referred to as an operator-split 
technique (Benson, 1989; Aymone et al., 2001), 
which is adopted in this section. The operator-split 
method consists of two steps, a Lagrangian step 

and an Eulerian step. First, the reference system 
(finite element mesh) follows the material 
deformation in the Lagrangian step, and a pure 
updated Lagrangian procedure step is done. 
Secondly, mesh smoothing is performed and the 
reference system is changed as desired. The 
solution then is remapped from the Lagrangian 
mesh to the new reference mesh to complete the 
Eulerian step. 
 
6.1 The Lagrangian step 
 

The Lagrangian step is a classical Lagrangian 
formulation calculation. On the base of the FE-FD 
hybrid method (Oka, 1994; Shibata et al. 1991; 
Akai et al., 1978), a large strain analysis program 
for saturated soils has been developed using the 
updated Lagrangian method (Di and Sato, 2004). 
The Lagrangian step of the operator-split ALE 
method can be easily implemented in the existing 
Lagrangian program source codes for large 
deformation problem.  

 Using the finite element method, standard 
finite element approach procedure is used for the 
equilibrium equation Eq. (39). Finally render the 
first coupled equation in the matrix form: 

 TGpuKuM ENNN =+∆+  (46) 

where  is the excess pore pressure values of 

elements,  the displacement vector at the 

nodes,  the mass matrix, K  the total 
stiffness matrix including a material stiffness part 
and a geometrical one,  makes up the coupling 
matrix, and  is the total load vector. 
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T

 Employing the FE-FD hybrid method, the 
second coupled equation in the matrix form is 
obtained from the continuity equation Eq. (43). 
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6.2 The Eulerian step 
 
(1) Mesh smoothing 
 
 Various methods such as h-adaptivity, p-
adaptivity and r-adaptivity techniques have been 
proposed for remeshing structure. The h-adaptivity 
method changes the mesh connectivity through 
addition of elements. The p-adaptivity method 
enhances the polynomial interpolation space in 
high strain location regions. The r-adaptivity 
method refines the mesh by relocation of nodes. 



 

 

Because of large deformation, mesh refinement 
should be performed at almost every time step. In 
order to avoid complicated computation, the mesh 
smoothing scheme in this paper moves nodes as in 
the r-adaptivity method. Unlike the classical 
remeshing techniques, the mesh smoothing 
procedure is performed while the topology of the 
initial mesh can be preserved. It is explicit, cheap 
and needs less computational efforts. 
 

 
Fig. 2 Relocation of the node 

 
We here decide how to move the reference 

system. The element nodal pattern is defined by 
creating a new mesh of the deformed body 
according to the element shape and the mesh 
smoothing scheme.  

 The total volume of elements surrounding a 
node, , is:  TV
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where  is the volume of element i ,  the 
number of elements surrounding the node. For each 
element , the coordinates of its gravity center are:  
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where  is the number of nodes in the element 

,  the number of unrelocated nodes in the 

element ,  is the nodal coordinates.  
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 The relocated coordinates of the node then is 
calculated as (See Fig. 2): 
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 The boundaries of the new mesh and those of 
the old mesh obtained at the end of the updated 
Lagrangian step must coincide at each step. The 
boundary points may only move in the tangential 
direction with a displacement different from the 
material displacement. 
 
(2) Transferring state variables 

 While the reference configuration changes to 
the new mesh pattern, the state variables (stress, 
strain etc.) obtained in the updated Lagrangian step 
are frozen. The state variable fields are then 
remapped onto the new reference configuration 
(new mesh) from the material configuration (the 
old mesh). The aim of this step is to solve Eq. (16) 
by a local least-squares smoothing method in 
Hinton et al. (1974) and Aymone et al. (2001).  

 In the updated Lagrangian step, state variable 
fields of elements are usually calculated at Gauss 
points. The values should be transferred to the 
Gauss points of the new finite element mesh (see 
Fig. 3). Because mesh smoothing is carried out at 
each time step, the distance between the non-
remeshed and remeshed Gauss points is small and 
any lack of equilibrium on the new mesh can be 
overcome in the next step. The known values of 
state variable at Gauss point, , can be related 

to the values at nodes, , as:  
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where φ  is the interpolation function matrix 

evaluated at Gauss points and  the value of a 

state variable  at the node 

M
Nf α,

f α  of the material 
configuration.  

Material configuration 

Referential configuration 

 

Material Gauss point

New Gauss point 

 
Fig. 3 Gauss points on the material and the new 

referential configurations 
 
 Inverting Eq. (51), the values at nodes are 
obtained.  
 
  (52) M
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 The gradient of the state variable near the 
material Gauss point is calculated as: 
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 Because the distance between the old and new 
meshes is small, the state variable at Gauss point of 
the referential configuration is calculated by: 
 

 ( )
X

xx
∂
∂
⋅−+=

M
GPM

GP
G
GP

M
GP

G
GP

fff  (54) 

 
where  is the coordinates of Gauss point on 

new mesh,  the coordinates of the non-
remeshed Gauss point. 

G
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 All state variables, including the nonlinear path 
dependent material variables, should be transferred 
from the old mesh to the new one.  
 
 
7. Numerical Example 
 
 Using updated Lagrangian scheme, a large 
deformation analysis program for saturated soils 
has been developed (Di and Sato, 2004). Based on 
this existing program source code, the operator-
split ALE method described in the preceding 
sections was implemented. With this program, 
numerical simulation of an embankment subjected 
to earthquake motion was carried out. The 
embankment was considered to be a plane strain 
problem. Infinite elements were used for the lateral 
boundary sides. The bottom was impermeable 
while the ground surface a drainage boundary. The 
fluidal-elasto-plastic constitutive model presented 
in Section 4 was used for the saturated soils. The 
initial finite element mesh of the slope is shown in 

Fig. 4. The input motion is the strong motion 
record observed at Port Island, Kobe during the 
Hyogoken-Nanbu earthquake in 1995, as shown in 
Fig. 5.  

 When the updated Lagrangian formulation was 
used to compute the seismic response of the 
embankment, some element volumes were turned 
to negative values due to severe distortion at time 
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Fig. 4 Initial finite element mesh of  
an embankment 
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1s (See Fig. 6). So stability of computation was 
stroyed and the program has to be stopped. 
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Fig. 5 Input motion 
 

 
g. 6 The deformed mesh at time 5.1s (The updated 

Lagrangian method) 

 In the simulation with the arbitrary Lagrangian 
lerian formulation, the finite element mesh was 
pt smooth at time 5.1s (See Fig. 7) and the 
lculation could easily be continued. The 
formed configurations at time 10.0s and after the 
rthquake are shown in Figs. 8 and 9, in which the 
ale of deformation is the same as that of the finite 



 
element mesh. The time histories of horizontal and 
vertical displacement on point P are shown in Fig. 
10. The shear stress-strain relationship and stress 
paths in element E are shown in Fig. 11. 

solution variables are transferred from the 
Lagrangian mesh to the new mesh. The Eulerian 
step is performed using mesh smoothing and data 
transferring schemes in this paper. The proposed 
method for large deformation analysis is illustrated 
by a numerical example of embankment subjected 
earthquake motion. The example shows that the 
proposed scheme can overcome numerical 
difficulties caused by severely distortion and 
entanglement of elements, which often occurs in  

Fig. 7 The deformed mesh at time 5.1s (The ALE 

 
Fig. 8 The deformed mesh at time 10.0s (The ALE 

method) 
 
 
 
8. Conclusions 
 

Due to extensive mesh distortion and elements 

method) 
 

entanglement in simulating large deformation 
problem, numerical difficulties and loss in accuracy 
caused by conventional Lagrangian finite element 

formulations arise. The ALE finite element method 
can be utilized to overcome these difficulties.  

 In this paper, a coupled ALE formulation for 
saturated soils is derived on the basis of Biot's two-
phase theory and an incremental approach. 
Jaumann stress rate is employed as an objective 
measure of stress rate to consider large deformation. 
The grid time derivative of stress is found using the 
Jaumann stress rate, and a fluidal-elasto-plastic 
constitutive model of saturated soils can be adopted 
without further modification in the ALE finite 
element analysis. The proposed ALE formulations 
consist of an equilibrium equation and a continuity 
equation. Pore water pressure and two sets of 
displacements, those of the material points and the 
mesh grid, are the three basic unknown variables. 
The coupled ALE formulation can be discretized by 
standard finite element procedure. 
 To an existing program source code written by 
the updated Lagrangian scheme, the operator-split 
ALE method is implemented. This algorithm is 
composed of two steps, a Lagrangian step and an 
Eulerian step. In the Lagrangian step a classical 
updated Lagrangian formulation calculation is done, 
whereas the finite element mesh moves with the 
material. In the Eulerian step, remeshing of the 
deformed body is conducted as desired and the 
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Fig. 10 Time history of displacement on 
point P 

 
Fig. 9 The deformed mesh after the earthquake 

 (The ALE method) 
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Fig. 11 The shear stress-strain relationship 

and stress paths in element E 



 

 

large deformation analyses by the classical updated 
Lagrangian formulation. 
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要 旨 

 水で飽和された土の動的大変形問題を解析するために、不定形ラグランジェ・オイラー（ALE）有

限要素法を展開した。流弾塑性構成式を用い、増分形式で支配方程式を表現した上で、連成形式の

ALE法の定式化を行なった。updated Lagrangian 法で展開されている既存の解析プログラムにALE法

をoperator-split形式で導入した。この方法はラグランジェとオイラーステップの２段階からなって

いる。前者は普通のupdated Lagrangian 法により解析を行い、後者でメッシュの切り替えとデータ

の変換を行なって、大変形形解析を行うものである。提案する手法の有効性を提体の動的大変形シミ

ュレーションにより検証した。 
 
キーワード: 飽和土、大変形、不定形ラグランジェ・オイラー（ALE）法、有限要素法、液状化、流
動化
 
 


