
1. Introduction 
 

In recent years, offshore pipeline engineering has 
increasingly dealt with continental slopes and deep 
waters. This means new problems have to be faced, 
which were previously disregarded. Among these, the 
hazard of sediment gravity flows has received attention 
due to the richness in the physics involved and 
environmental consequences (Hampton et. al, 1996; 
Simpson, 1997). Sediment gravity flows are essentially 
downslope currents of material denser than the ambient 
water. They include subaqueous debris flows and 
turbidity currents (Drago, 2002).  

The importance of pore water pressures in the 
dynamics of debris flows was pointed out by Iverson 
(1997). The developments of pore water pressures may 
exert significant effects on the process of subaqueous 
liquefied sediment flow as well. Sassa et al. (2003) 

developed a two-dimensional analysis code named 
LIQSEDFLOW by combining a set of two-dimensional 
Navier-Stokes equations for a fully liquefied soil domain 
with a consolidation equation for a solidifying soil 
domain.  

The aim of this study is to extend LIQSEDFLOW so 
as to deal with truly three-dimensional nature of liquefied 
sediment flows. Toward this goal this paper restricts the 
discussion into a fluid-dynamics module only. The 
fluid-dynamics module is based on a set of 
three-dimensional Navier-Stokes equations for a fully 
liquefied soil domain that are to be combined with 
consolidation equations for a solidifying soil domain. 
The Navier-Stokes equations together with the equation 
of continuity may be solved using a finite difference 
method. Specifically, a simplified MAC method 
(Amsden and Harlow, 1970) in terms of staggered 
rectilinear grid is applied, and the Poisson equations 
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Synopsis 
A three-dimensional analysis procedure for describing the behaviour of liquefied soil with a 

free surface has been developed in the present study. The liquefied soil is modelled as a heavy, 
incompressible viscous fluid. A set of three-dimensional Navier-Stokes equations and the 
continuity equation are numerically solved under moving boundary conditions. For the purpose of 
identifying the moving interface between the ambient fluid and the liquefied soil, the 
volume-of-fluid technique (Hirt and Nicholas, 1981) is adopted. The predictive capability of the 
proposed analysis procedure is discussed with reference to a class of dam-break problems in which 
a column of water in air collapses under its own weight. The predicted performance compares 
favourably with results of two-dimensional experiments of Martin and Moyce (1952), encouraging 
further test of the three-dimensional analysis code developed. 
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regarding the excess pore pressures may be solved using 
the conjugate gradient (CG) method (Ferziger and Peric, 
1997). For tracking the moving interface between the 
ambient fluid and the liquefied soil, we will adopt the 
volume-of-fluid (VOF) technique (Hirt and Nichols, 
1981). An efficient volume-advection scheme (Hamzah, 
2001) will also be used to ensure the conservation of 
mass in the course of the liquefied flow. 

We will then examine the validity of the proposed 
analysis procedure against a class dam-break problems, 
in which a column of water in air collapses under its own 
weight.   

 
2. The Numerical Model Developed 
 
2.1 The governing equations 

Consider a body of liquefied soil underwater. One of 
the simplest yet meaningful modeling for the liquefied 
soil is to regard it as a heavy, incompressible viscous 
fluid with a free surface. There follow 
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where u, v and w are the velocity in x, y and z directions, 
respectively; ρ  is the fluid density, ,xg yg and zg are 
the components of gravitational acceleration, p is the 
pressure,ν is the kinematic viscosity. 
 
2.2 Boundary conditions 

Let Ω be a fluid domain, bounded by Σ, inside 
which consider a material surface moving with the fluid 
whose equation is 0),( =txF

r
(Fig. 1). The material 

surface 0),( =txF
r

may be called a free surface or an 
interface when it represents a surface across which the 
properties of the medium are discontinuous. 

 

 
 
 
 
 
 
 
 

(1) Boundary conditions on Σ 
On Σ, one or more components of fluid velocity 

u
r

can be prescribed, i.e. 

 ( ) ( ) 0;,, ≥Σ∈= txtxwtxu
rrrrr

 (3) 
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 (4) 

In Eqs. (3) - (4), w
r

is the prescribed velocity on Σ. 
The last of these equations results from applying the 
divergence theorem to the continuity equation and sets 
an integral constraint on the normal component of the 
velocity on Σ. It is also possible to specify 
Neumann-type boundary conditions on velocity, which 
are conditions for the normal and/or tangential 
components of the stress. These boundary conditions 
take the form 

 ( ) 0; ≥Σ∈⋅⋅= txnnn
rrrr
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If the flow is two-dimensional and the boundary has 
small curvature, the two stress conditions can be written 
as 
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In three dimensions, there are two local, linearly 
independent, tangential directions. Provided boundary 
conditions are always prescribed for each velocity 
component at any boundary point, both Dirichlet or 
Neumann conditions can be chosen, in either normal or 
tangential directions. It is also possible to specify 
different types of boundary conditions on different parts 
of Σ. 

An important case with stress conditions are free-slip 
condition, in which the tangential stress is set to zero. 
This boundary condition is not appropriate for real 

0),( =txF
r  

Ω  
Σ  

Fig. 1 Solution domain for fluid flow problem 



viscous fluids, but it is useful in the numerical 
approximations to the Navier-Stokes equations when the 
effect of viscosity is relatively small and the boundary 
layers near the walls cannot be resolved (Lemos, 1994). 
 
(2) Free-surface boundary conditions 

A free-surface is a material surface across which the 
density is assumed to be discontinuous. A material 
surface always consists of the same particles. The rate at 
which any function varies for a moving particle is given 
the material derivative of F. Thus the kinematical 
relation defining a surface moving with the fluid is  

0=∇⋅+
∂
∂

= Fu
t
F

Dt
DF r

 (7) 

Conversely, by requiring the motion to be continuous, it 
can be shown that a surface satisfying this equation 
always consists of the same particles. Fixed or moving 
walls also satisfy this equation, but in general Eq. (7) 
should be regarded as another equation to be solved if the 
position of the material surface F cannot be known 
a-priori. 
 The existence of a free surface poses three problems. 
The first is how to determine of its position. The second 
is how to determine of its time evolution. The third is the 
prescription of the correct boundary conditions on all 
points of the free surface. Since these boundary 
conditions depend on the location and shape of the free 
surface, the three problems are interrelated. 
 At a material surface, two transition relationships 
must be satisfied. One is the continuity of velocity. The 
other is the continuity of stress vector. The continuity of 
velocity is a purely kinematical constraint and is called 
the kinematic boundary condition. It is mathematically 
expressed by Eq. (7). The continuity of the stress vector 
is also required to prevent the material surface from 
acquiring an infinite acceleration and is called the 
dynamic boundary condition. The continuity of the 
tangential component of the stress vector is expressed by 
the following equality 
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 In three-dimensional problems this equation must be 
satisfied along different directions defined linearly 
independent vectors t

r
that lie on the local tangent plane 

to F. In two-dimensional problems, Eq. (8) becomes a 

scalar equation. 
 The continuity of the component of the stress vector, 

gives the following equation 
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where ps is the surface tension pressure. Surface tension 
is important in capillary waves, which sustain wind stress 
in the sea, and the combination of surface tension and air 
entrainment originates much of the complexity of aerated 
regions in breaking flow. Such effects are too complex to 
be included in the present formulation. Therefore, for the 
purposes of this work, surface tension is neglected. 

 If the free surface separates fluids of very different 
densities, the dynamic free-surface boundary conditions 
can be simplified. This is the case in fluid-gas interface, 
in which the density and viscosity of the gas are much 
smaller than those of the fluid. Consequently, the 
pressure variations in the gas are much smaller if the 
velocities and their derivatives have comparable 
magnitude. Thus, the following approximate equations 
may be used 
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These equations are tangential and normal stress 
conditions, respectively. The left-hand sides of Eqs. (10) 
and (11) refer to conditions in the fluid, whereas the 
right-hand sides refer to conditions in the gas. If the fluid 
is treated as an ideal fluid, the normal stress condition 
is .0pp = This is called the inviscid free-surface 
boundary condition.  
 
2.3 Numerical method 
 
(1) Computational mesh and internal obstacles 
 
(a) Computational mesh 

The governing equations (1) - (2) are discretized in a 
non-uniform Eulerian mesh by using the MAC finite 



Fig. 3 Flowchart of the computer program 
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difference method (Amsden and Harlow, 1970). The x-, 
y- and z-momentum transports are respectively 
calculated at the right, back and top faces of a cell and 
the continuity equation is calculated at the center of the 
cell (Fig. 2(a)). The computational domain is surrounded 
by a layer of fictitious cells. These cells are used to set 
velocity boundary conditions so that the same discretized 
equations are used in the whole computational domain.  

 
(b) Internal obstacles 

Internal obstacles are may be introduced as a special 
case of two-phase flow in such a way that the first phase 
represents the fluid with a volume fractionΘ and the 
second phase represents obstacle with a volume fraction 
equal to Θ−0.1 (Kothe et al., 1994). The obstacle is 
characterized as a fluid of infinite density and has zero 
velocity. The volume fractionΘ is assumed to take zero 
in the obstacle material and take one in the fluid. The 
partial flow flagΘ becomes a perfect step function only 
when obstacle boundaries coincide with mesh lines that 
represent lines of constant x, y and z.  

In general, obstacle boundaries can arbitrarily snake 
through the mesh, cutting through cells. This gives rise 
to Θ values in the range )0.10.0( ≤Θ≤ , which is 
necessary to avoid a stair-step model of a curved interior 
obstacle boundary. Those cells having values of Θ  
satisfying )0.10.0( ≤Θ≤ are termed partial flow cells. 
This is because a volumetric portionΘ of such a cell is 
open to flow while the remaining portion )0.1( Θ− is 
occupied by an obstacle that impedes to flow.  

Refer to Fig. 2(b) for the partial cell treatment with 
internal obstacles (shaded region). In the presence of 
internal obstacles, the finite difference equations are 
facilitated by defining for each partial cell a volume 
fraction kji ,,Θ at the cell center, an area 
fraction kji ,,21+Θ at the right face, an area 
fraction kji ,21, +Θ at the front face, and an area 
fraction 21,, +Θ kji at the top face.   
 
 
 
 
 
 
 
 
 
 

(2) Procedure of computation 
The computational procedure proceeds as follows 

(Fig. 3). Use explicit approximations to the Navier– 
Stokes equations to compute the first guess for 
new-time-level velocities. To satisfy the continuity 
equation, perform pressure–velocity iterations. This 
procedure is a variant of Newton’s method and is applied 
to the Poisson equation with respect to pressure in 
incompressible flow. More specifically, pressures are 
iteratively adjusted in each cell and velocity changes 
induced by the pressure changes are added to the 
velocities that have been computed using the 
Navier–Stokes equations with the predetermined 
pressure field. The function F, defining fluid-occupied 
regions, is updated to give the new fluid configuration. 
All mesh cells are reflagged as full cells, surface cells or 
empty cells. All variables are updated, the time and cycle 
counters are incremented and the computational cycle is 
restarted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(3) Finite-difference approximations to momentum 
conservation equations  
A standard finite-difference approximation to Eqs. 

(2) in MAC-type methods is expressed as  
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Following Hirt and Nichols (1981), the convective 
terms in Eqs. (12) are discretized using a combination of 
first-order donor-cell and centered-difference 
approximations. The expression for FUX is then given 
by 
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When ,0=α expression (13a) reduces to the second- 
order accurate centered-difference approximation. For 

1=α , the first-order donor-cell form is recovered. The 
expressions for FUY and FUZ are given by    
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Likewise, the approximations for the convective 
accelerations in the y-direction are: 
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The approximations for the convective accelerations in 
the z-direction read: 
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Here 2)( 121 iii xxx ∆+∆=∆ ++ , 2)( 121 jjj yyy ∆+∆=∆ ++  
and 2)( 121 kkk zzz ∆+∆=∆ ++ . When the quantities in 
the finite-difference expressions are required at positions 
where they are not defined (e.g. n

kjiv ,,21+ in FUY 
n

kjiu ,21, + in FVX, etc), they are interpolated before using 
them in the finite-difference equations. When a product 
between any quantities is required, the quantities are 
averaged (interpolated) before the product is formed.  

Lemos (1994) reduced a finite-difference to a 
differential equation by expanding each of the finite 
difference-function terms in a Taylor series. The lowest 
order terms in the expansion represent the original 
differential equation being approximated. All higher 
order terms constitute the truncation errors caused by the 
finite-difference approximation. The stability of a finite- 
difference equation can often be determined from an 
examination of these truncation errors. If only diffusion 
truncation errors are retained to order t∆ and 2x∆ , the 
finite-difference equations (12) can be reduced to 
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In comparing Eqs. (16) with Eqs. (2), we find 
additional terms in Eqs. (16). Those terms involving 

t∆ result from the first-order approximation to ,tu ∂∂  
tv ∂∂ and ,tw ∂∂ while terms containing ,2x∆ 2y∆ or 

2z∆ stem from evaluating undefined variables by simple 
average formulas and from computing derivatives of 

,2u ,2v ,2w ,uv uw and vw terms. These additional 
terms represent negative diffusion coefficients so that the 
finite-difference scheme might yield growing unstable 
solutions if the viscosityν is smaller than the truncation 
errors terms. Thus, according to Lemos (1994), the 
following discretization of the viscous term in Eqs. (12) 
was adopted:    
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(4) Finite-difference approximations to continuity 
equation  
Velocities computed from Eqs. (12) in general will 

not satisfy the continuity equation because pn+1 is not 
available. To satisfy the continuity equation and to 
determine the correct pressure, values of pressures and 
velocities must be adjusted in each cell that is occupied 
by fluid. In a full cell, pressure is changed in such a way 
that the divergence Di,j,k left by the first step is driven to 
zero; in a free-surface cell, the cell pressure may be 
determined in such a way that a linear interpolation 
between the pressure in the surface and adjacent full cell 
yields the wanted value ps (usually zero) at the 



free-surface location. In both cases, the velocities located 
on the sides of the cell are simultaneously adjusted, in 
response to the pressure change in the cell.  

The pressure in a full cell is split into an old 
time-level component and a correction such that 

n
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n
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Then we can work out the pressure derivatives: 
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Substituting these in the momentum equations gives: 
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Let us define the following quantities: 
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Then the momentum equations are written as:  
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The iterative method starts with calculating a first 
estimate of the velocities with a fully explicit guess 
( 0)1( =∆p ): 
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For an improved guess the pressure correction )2(p∆  
should be included such that 
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Substitute these into the continuity equation. Then, a 
form of Poisson equation results: 
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This equation can be solved for )2(p∆ . For this purpose 
we used finite differences taking into consideration the 
variable mesh to obtain: 
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The pressure correction )2(p∆ is now computed from the 
requirement 0)2(

,, =kjiD such that 
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Fig. 4 Sketch for pressure interpolation procedure 

Fig. 5 Flowchart of pressure-velocity iteration 
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Convergence of Eq. (24), which is a variant of the 
Newton-Raphson relaxation technique, can be 
accelerated if )1(

,, kjiD is multiplied by an over-relaxation 
factorω such that 21 ≤≤ ω . An optimum value ofω is 
often equal to 1.7; an unstable iteration results if ω  
exceeds 2 (Hirt and Cook, 1972).  

In order to deal with a free surface, we need an 
additional procedure because the location of the free 
surface is unknown a priori. The procedure adopted 
herein is described in brief as follows (refer to Fig. 4). 
The surface cell pressure pi,j,k may be determined by a 
linear interpolation (or extrapolation) between the 
surface pressure, ps, and pressure, pN, inside the fluid. 
Namely,  

sN
n

kji ppp ζζ +−=+ )1(1
,,             (25) 

where ddc=ζ is the ratio of the distance between the 
cell centers to the distance between the free surface and 
the center of the neighbor interpolation cell. When the 
surface tension effect is neglected, ps can be set zero. 
Equation (24) can be used to compute the pressure 
correction for a surface cell, provided S is replaced by 

kjisN pppS ,,)1( −+−= ζζ          (26) 

After the pressure correction is found from Eq. (24), 
neighbor velocities are updated using Eq. (22). The 
pressure correction is always computed using the most 
up-to-date velocities. 

 )2(
,,,,

)2(
,, kji

n
kjikji ppp ∆+=   (27) 

 )2(
,,

,,21

)1(
,,21

)2(
,,21 kji

kji
kjikji p

x
tuu ∆

∆
∆

±=
±

±± ρ
 (28a) 

 )2(
,,

21

)1(
,21,

)2(
,21, kji

j
kjikji p

y
tvv ∆

∆
∆

±=
±

±± ρ
 (28b) 

 )2(
,,

21

)1(
21,,

)2(
21,, kji

k
kjikji p

z
tww ∆

∆
∆

±=
±

±± ρ
 (28c) 

    
 
 
 
 
 
 
 
 
 
 
 
In summary, the procedure of pressure iteration can 

be stated as follows (refer to Fig 5). The correction of 
pressure is calculated from either Eq. (24) for full cells or 
from Eq. (26) for free surface cells. The corrected 
pressure is then obtained from Eq. (27). The velocities 
compatible with the new corrected pressure are obtained 
from Eqs. (28). This process is done iteratively until 
the kjiD ,, term becomes sufficiently small such that the 
velocity field is in required accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(5) Numerical treatment of free surfaces 
A free surface poses three problems in numerical 

fluid dynamics: the surface must be numerically 
described; the surface must be advanced in time; and 



appropriate boundary conditions must be applied at the 
location of the surface. These three problems are 
interrelated, because the algorithm used to advance the 
free surface in time depends on the method used to 
define the free surface, and the boundary conditions can 
only be applied after the location and shape of the 
surface are known. 

 
(a) Free-surface representation methods 

The main issue is that free-surface representation 
methods should be able to treat any free surface 
configuration (nearly horizontal, nearly vertical, bubbles, 
drops, overturning surfaces, etc) economically and 
without logical problems. Two types of such methods 
have been used for defining the location and shape of 
free surfaces: line/interface methods and region (or 
volume) methods. Examples of the first type are the 
height function and line segment methods. Examples of 
region methods are the use of marker particles and those 
with “volume of fluid” techniques. 

Height functions are the simplest method for treating 
free surface problems. The free surface is defined be a 
distance from a reference line. Thus, for a free surface 
that is nearly horizontal, the reference line may be the 
bottom of the mesh and ),( txηη = , the height above 
that datum, may be approximated by a set of discrete 
values of η . In this approach, the slope of the 
surface x∂∂η must be smaller than the mesh aspect 
ratio xy ∆∆ . Furthermore, the method does not work at 
all with multiple surfaces. 

Line segments are a generalization of the 
height-function method. In this method, the free surface 
is defined as a chain of short segments. These segments 
are defined by sets of ordered points whose coordinates 
are stored. The length of such a segment should be 
smaller than the minimum cell size. More storage is 
required than in the previous case, but the method is not 
limited to single-valued surfaces. There is one important 
difficulty, however. When surfaces intersect or when a 
surface fold over itself, segment chains must be 
reordered. Detection of such intersections and efficient 
reordering are difficult if not impossible. 

Thus, the methods which define fluid regions rather 
than interfaces are advantageous in situations involving 
multiple free boundaries. This eliminates all ordering 
problems found in line/surface methods. 

The first of the region methods may be the 
marker-and-cell (MAC) method. Storage requirements 

with this method increase significantly, because a large 
number of particle coordinates must be stored. It is also 
time consuming to move all marker particles (an average 
of four to ten marker particles per cell is needed). A free 
surface is defined as a cell that contains marker particles 
and has at least one neighbour cell without marker 
particles. The actual location of the free-surface position 
within the cell is determined by an additional 
computation based on the distribution of marker particles 
within the cell.  

Marker particle methods offer the distinct advantage 
of eliminating all logic problems associated with 
intersecting surfaces. This is primarily a consequence of 
the fact that while particles have to be ordered when 
marking regions. The particle method is also readily 
extendable to three-dimensional computations, provided 
the increased storage requirements can be tolerated.  

In retrospect, it appears that a method that defines 
fluid regions rather than interfaces offers the advantage 
of logical simplicity for situations involving intersecting 
multiple free-surface boundaries. While the marker 
particle method provides this simplicity, it suffers from a 
significant increase in required computer storage. It also 
requires additional computational time to move all the 
points to new locations. It is natural, therefore, to seek an 
alternative that shares the region defining property 
without an excessive use of computer resources. Such a 
method is described in the next section. 

 
(b) Volume-of-fluid (VOF) method 

In the VOF method, a free surface is represented on 
the fixed grids using fractional fluid volume in a cell (or 
in a control volume). Each rectangle in Fig. 6 denotes a 
unit cell. The fractional volume of fluid, F, is defined 
such that it is equal to unity at any point occupied by 
fluid and zero otherwise (Hirt and Nichols, 1981). As the 
free surface moves, the fractional volume-of-fluid of 
each cell is updated. In a numerical sense, every cell is 
classified into three categories according to the value of 
F (see Fig. 6). If a cell is completely filled with fluid, the 
fractional volume-of-fluid of the cell is unity (F = 1) and 
the cell is considered to be in the main flow region. If a 
cell is empty (F = 0), it belongs to an empty region and 
its contribution to the computation of the flow field is 
excluded. A cell is considered to be on the free surface 
when the value of F lies between 0 and 1 )10( 〈〈 F .  

Although the VOF technique can locate free 
boundaries nearly as well as a distribution of marker 
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particles, and with a minimum of stored information, the 
method is worthless unless an algorithm can be devised 
for accurately computing the evaluation of the F filled. 
The time dependence of F is governed by Eq. (7). The 
fact that F is a step function with values of zero or one 
permits the use of a flux approximation that preserves its 
discontinuous nature. This approximation, referred to as 
the donor-acceptor scheme (Hirt and Nichols, 1981), is 
described in more detail in the next section.  

In summary, the VOF method offers a 
region-following scheme with minimum storage 
requirements. Furthermore, because it follows regions 
rather than surfaces, all logic problems associated with 
intersecting surfaces are avoided with the VOF technique. 
The method is also applicable to three-dimensional 
computations, where its conservative use of stored 
information is highly advatageous. 

Thus, the VOF method provides a simple and 
economical way to track free surface boundaries in two- 
or three-dimensional meshes. In principle, the method 
could be used to track surfaces of discontinuity in 
material properties, in tangential velocity, or any other 
property. The particular case being represented 
determines the specific boundary condition that must be 
applied at the location of the boundary. For situations 
where the surface does not remain fixed in the fluid, but 
has some additional relative motion, the equation of 
motion, Eq. (7), should be modified.  
 
 
 
 
 
 
 
 
 
 

(c) Methods for updating a free surface 
The kinematic condition for the advection of the 

VOF function (Eq. 7) can be written in finite difference 
form as: 
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The convective terms may be rearranged to divergence 
form, minus a divergence correction term: 
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Substituting (30) into (29) we get the divergence part: 
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which is then updated with the correction: 
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This sequence insures conservative advection of F 
(Kothe et al., 1994). Ordinarily, the correction in (32) 
would be zero due to continuity. However, it has been 
found desirable to include the correction numerically 
because although the magnitude is small yet non-zero 
and of the order of t∆ε .  

 The divergence equation for F can be finite 
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Here the amount of F fluxed across the cell face in t∆ is: 
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with the correction factor:  
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In these expressions, superscript a denotes the acceptor 
cell, subscript d denotes the donor cell, and double 
subscript ad corresponds to either a or d depending on 
the surface orientation. Double subscript dm denotes the 
upstream of the donor cell and idx∆ stands for the width 
of the donor cell. The operator min in Eq. (34) prevents 

Fig. 6 Numerical methods for volume-of-fluid method
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the fluxing of more F from the donor cell than it has to 
give, while the operator max in Eq. (35) accounts for an 
additional F flux, CFx, if the amount of void (1-F) to be 
fluxed exceeds the amount of void available in the donor 
cell. Fig. 7 provides a pictorial explanation of Eq. (34), 
where the shaded region represents the amount of fluid in 
each cell and the striped region represents the amount of 
fluid to be fluxed. The donor and acceptor cells are 
defined in Fig. 7a for fluxing across a vertical cell face. 

Following Nichols and Hirt (1981), the rules for 
choosing aad = or dad =  are the following.  
When ,dad = the flux is an ordinary donor-cell 
value, VFF d= , in which the F value in the donor cell 
is used to define the fractional area of the cell face 
fluxing, as shown in Fig. 7b. When ,aad = the value of 
F in the acceptor cell is used to define the fractional area 
of the cell face across which fluid is flowing. In case (c) 
of Fig. 7, all the fluid in the donor cell is fluxed because 
everything lying between the dashed line and the flux 
boundary moves into the acceptor cell. In case (d) of  
Fig. 7, more fluid than the amount VFF a= , must be 
fluxed, the extra fluid between the dashed line and the 
flux boundary is equal to the xCF value in Eq. (34).    
  
 
 
 
 
 
 
 
 
 
 
 
 

 Likewise, the approximations for F-convection in 
y-direction can be expressed as:  
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Here the amount of F fluxed across the cell face in t∆ is: 
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with the correction factor:  
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The F-convection in z-direction can be expressed as: 
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Here the amount of F fluxed across the cell face in t∆ is: 
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with the correction factor:  
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Finally, the divergence correction is added: 
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(d) Discretization of free-surface boundary 
conditions  
After deciding which method will be used for 

free-surface representation and updating, it is necessary 
to impose the correct stress conditions at the free-surface 
location. For a three-dimensional surface, the normal and 
tangential stress conditions are 
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Fig. 7 Examples of free-surface shapes used in the 
advection of F 



Fig. 8 Sketch for discretized tangential stress condition
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where xn , yn and zn are the components of the unit vector 
normal to the surface, and zyxzyx tttttt 222111 ,,,,, are 
components of the tangential unit vector. In these 
equations it is assumed that the influence of the gas on 
the fluid is negligible. For a free surface of small 
curvature these conditions can be replaced by the simpler 
expressions 
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Usually, these simplified stress conditions are used in 
place of completing stress conditions because the former 
is rigorous yet difficult to use (Nichols and Hirt, 1971). 
 The normal stress condition is imposed as a 
boundary condition for the pressure. Incorrect normal 
stress conditions result in a loss of momentum 
conservation in free-surface cells; the free surface may 
move too slowly or too fast, and the calculation may 
become unstable. The type of pressure boundary 
conditions in free surface codes (MAC and SMAC), 
consisted of simply setting skji pp =,, , regardless of the 
position of the surface within the cell. This technique 
was not very satisfactory, however. An improved 
method consists of determining the free-surface position 
within the cell (Nichols and Hirt, 1971). Then, the 
pressure on the center of the surface cell is set in such a 
way that an interpolation (or extrapolation) between the 
surface cell and the adjacent interpolation cell yields 

spp = at the free surface (refer to Fig. 4) is given by Eq. 
(25)  

The correct tangential stress condition is given by Eq. 
(46). To apply this condition, it is necessary to know the 
position and shape of the free surface. If the surface cell 
has only one neighboring empty cell, the boundary 
velocity is set to ensure the vanishing of the velocity 
divergence. When there are two or more empty 
neighbour cells, the individual contributions to the 

divergence equation are separately set to zero. Suppose, 
for instance, that there are two adjacent surface cells 

),,( kji and ),,1( kji + in such a way that they have two 
adjacent empty cells )1,,( +kji and )1,,1( ++ kji (see 
Fig. 8). Accordingly, tangential stress conditions may be 
imposed by setting the velocities at all boundaries 
between the surface and empty cells in terms of the 
discritized continuity equation for the surface cell. 
Namely,  
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(e) Fluid volume adjustments 
The value F∆ computed using the above procedure 

is subtracted from the donor cell and added to the 
acceptor cell. This process is repeated for all cell 
boundaries in the mesh, and the resulting F values define 
the new fluid configuration. Occasionally, the 
time-advanced F values may become slightly less than 
zero, or slightly greater than unity. A remedy for these 
situations may be done as follows. After the 
F-convection calculation has been completed, the mesh 
is swept to reset values of F being less than zero back to 
zero, and values of F being greater than one back to one. 
Accumulated changes in fluid volume introduced by 
these adjustments during a calculation are recorded and 
may be printed out at any time.  

There is another adjustment needed in F in order that 
it may be used as a surface cell flag. A surface cell has 
values of F lying between zero and one and at least one 
neighbouring cell that is empty. However, F values 
cannot be tested against exact numbers such as zero and 



one because round off error would cause spurious results. 
Instead, a cell is defined to be empty when F is less 
than Fε and to be full when F is greater than )1( Fε− . 
Here Fε is typically 10-6. If, after advection, a cell has an 
F value less than Fε , this F is set to zero and all 
neighbouring full cells become surface cells by having 
their F values reduced from unity by an amount Fε1.1 . 
These changes in F are also included in the accumulated 
volume change. It is observed that typically volume 
errors after hundreds of cycles are only a fraction of one 
per cent of the total fluid volume. 

 
(f) Determining interfaces within a cell 

For the accurate application of the normal-stress 
boundary condition, it is necessary to determine the 
location of the free surface within the surface cell. In 
addition, it may be necessary to know the local 
free-surface curvature (e.g. if surface tension effects are 
to be included). In VOF technique, it is assumed that the 
boundary can be approximated by a straight line cutting 
through the cell. By first determining the slope of this 
line, it can be moved across the cell to a position that 
intersects the known amount of fluid volume in the cell.    

For VOF slope calculation, a cell block is used in this 
study so that the slope between a surface cell and a 
neighboring cell does not lose its accuracy even though 
the neighbouring cell is empty. A cell block is 
constructed of a surface cell and its eight neighbouring 
cells as shown in Fig. 8. For calculating the slope at the 
face of a surface cell by use of neighbouring cells, it is 
assumed that the interface of the free surface can be 
represented by a single-valued function f(x) or f(y) in the 
x- or y-direction of the real computational domain. If the 
surface is represented as f(x), f(x) can be approximated as 
three cell columns that are the sum of the volume 
fraction from cell (j-1) to cell (j+1) for each cell column 
of Fig. 9:  
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where ∑ +

−=
∆=

1

1

j

jk kyH and f = 0 are taken as the bottom 

edge of the (j-1) row of the cells.  

The average slope at the center of a cell block is 
calculated by equation (49) 
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A similar calculation can be made for yf ∂∂ , i.e. 
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where ∑ +

−=
∆=

1

1

i

ik kxH and f = 0 are taken as the bottom 

edge of the (j-1) row of the cells.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

The height difference Hd in each-direction, as shown 
in Fig. 10 can be expressed as  

ηξ ηξ ddd mmH +=   (52) 

where ξξ ∂∂= fm  and ηη ∂∂= fm . 

Once the surface slope and the side occupied by fluid 
have been determined, a line can be constructed in the 
cell with the correct amount of fluid volume lying on the 
fluid side. This line is used as an approximation to the 

Fig. 9 Definition of cell block 
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actual surface and provides the information necessary to 
calculate the pressure interpolation factor ζ for the 
application of the free-surface pressure boundary 
conditions (Eq. 25). 

 
 
 
 
 
 
 
 
 
 
 
 
 

(6) Mesh boundary conditions 
At the mesh boundaries, several types of boundary 

conditions may be imposed using the layer of the 
fictitious cells that surround the mesh. The built-in types 
of boundary conditions are as follows: free-slip, no-slip, 
continuative and constant pressure boundary conditions. 
Consider a left boundary, for instance, as illustrated in 
Fig.11. If this is a rigid free-slip wall, then the normal 
velocity and the gradient of the tangential velocity are 
both set zero. Namely, 
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If the left boundary is a rigid no-slip wall, then both of 
the normal and tangential velocities are set to zero. That 
is to say, 
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For a continuative or outflow boundary, a prescription is 
needed so that the fluid may flow out of the domain 
computation. The continuative boundary conditions 
imposed at the left wall are expressed as 
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(7) Numerical stability 

Numerical calculations often have computed 
quantities that develop large high-frequency oscillations 
in space and time. This behavior is usually referred to as 
numerical instability, especially if the physical problem 
has unstable solutions and if the calculated results exhibit 
significant variations over distances comparable to a cell 
width or over times comparable to the time increment. If 
this happens, the accuracy of the calculated results 
cannot be relied on. To prevent such numerical 
instability or inaccuracy, certain restrictions should be 
observed in defining the mesh increments, the time 
increment and the upstream differencing parameter .α   

The mesh increments should be chosen small enough 
to resolve the expected spatial variations in all dependent 
variables. Once a mesh has been chosen, the choice of 
the time increment necessary for stability is governed by 
two restrictions. First, fluid must not flow across more 
than one computational cell in one time step because the 
finite difference equations assume fluxes only between 
adjacent cells. Thus, the time increment must satisfy the 
following inequality  
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where the minimum is evaluated with respect to every 
cell in the mesh and rC is a Courant number. Second, 
when a nonzero value of kinematic viscosity is used, the 
momentum must not diffuse more than approximately 
one cell in one time step. A linear stability analysis shows 
that this limitation implies 
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With t∆ chosen to satisfy the above two inequalities, 
the last parameter needed to ensure numerical stability is 

Fig. 11 Velocity boundary conditions near the left wall 

Fig. 10 Representation of height in a cell 



α . The proper choice for α is 
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In the present computation code, the value of α is 
automatically adjusted to be: 
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3. Simulation Results 
 

3.1 Two-dimensional dam-break problem 
We applied the proposed analysis procedure to a 

two-dimensional dam-break problem in which a column 
of water in air collapses under its own weight. This 
problem is selected because the initial flow configuration 
is simple and the experimental data are available. The 
computed results are compared with the experimental 
results by Martin and Moyce (1952). 

The definition of the dam-break problem is 
illustrated in Fig. 12. The rectangular computational 
domain of size 5a x a x 1.5a is subdivided into a 
non-uniform mesh of 100 grids in the x-direction, 20 
grids in the y-direction and 30 grids in the z-direction. 
The variables used in the computation are all 
non-dimensional variables by choosing a as reference 
length and agz as reference velocity. The non- 
dimensional viscous coefficient ])([ aga zν is chosen 
at 10-5 and the non-dimensional time increment 

agtT z∆=∆  is taken as 0.005, where gz is 
gravitational acceleration. In the problem under 
discussion a rectangular column of water is initially 
confined between a vertical wall and a gate and is in 
hydrostatic equilibrium. The water column is 1.0-unit 
wide and 1.0-unit high. Gravity is acting downward with 
unit magnitude. At the beginning of the calculation, the 
right wall (dam face) is removed and the reservoir dam 
water is allowed to flow out on to a dry horizontal floor.  

It can be seen from Fig. 13 that the present analysis 
procedure captures the essential features of the free 
surface flow. The time histories of the water front 
location and water column height are shown in Fig. 14. 
The experimental results of Martin and Moyce (1952) 
with a = 0.06 m, b = 0.06 m and the calculated results in 
terms of two-dimensional LIQSEDFLOW (Sassa et. al., 
2003) are also plotted in this figure. It is seen that the 
predicted performance compares favourably with the 

observed flow behaviour, validating the three- 
dimensional analysis code developed. 

The application of the 3D-analysis code truly 
three-dimensional flow problems is ongoing and will be 
published in the near future.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Two-dimensional dam-break problem 
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Fig. 13 Calculated fluid configurations in two- 
dimensional dam-break problem at three different 
times: (a) T = 0.25; (c) T = 1.5 and (c) T = 3.0 
(       represent initial fluid configuration) 
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3.2 Three-dimensional dam-break problem 
The definition of the dam-break problem is 

illustrated in Fig. 15. The rectangular computational 
domain of size 5 x 1.2 x 1.5 is subdivided into a 
non-uniform mesh of 100 grids in the x-direction, 24 
grids in the y-direction and 30 grids in the z-direction. A 

gate 0.3 m wide and 1.5 m high is provisioned in 
computational domain. For numerical conditions, the 
same condition as the two-dimensional dam-break 
problem is applied. In the problem under discussion a 
rectangular column of water is initially confined in a 
reservoir and is in hydrostatic equilibrium. At the 
beginning of the calculation, the gate is removed and the 
water is allowed to flow out on to a dry horizontal floor. 

It is seen from Fig. 16 that the present analysis 
procedure captures the essential features of the 
three-dimensional free surface flow, warranting further 
scrutiny of the flow-out processes.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 Predicted and measured time histories of 
waterfront location and water column height in two- 
dimensional dam-break problem 

Fig. 15 Three-dimensional dam-break problem 
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Fig. 16 Calculated fluid configurations in three- 
dimensional dam-break problem at three different 
times: (a) T = 0.5; (c) T = 1.5 and (c) T = 5.0 
(       represent initial fluid configuration) 
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4. Conclusions 
 

A three-dimensional analysis procedure for 
describing the flow-out behaviour of liquefied soil with a 
free surface has been developed. The principal 
conclusions derived are as follows: 

The predicted performance compares favourably 
with the results of two-dimensional experiments of 
Martin and Moyce (1952). The calculated results are also 
consistent with those predicted in terms of two- 
dimensional LIQSEDFLOW (Sassa et al., 2003).  

A truly three-dimensional dam-break problem is 
worked out using the analysis code developed, inspiring 
a better physical perception. 

It is a subject for future studies to consistently 
consider the effect of soil consolidation and other such 
sedimentary processes in a manner compatible with the 
present fluid-dynamics module. By doing so, it is hoped 
that the three-dimensional analysis procedure will find 
wider applications to sediment-related processes that 
operate in waterfronts and coastal oceans.  
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要旨 

 沿岸域の未固結堆積土斜面において海底地すべりが発生すると、崩土は長距離にわたって沖合に流出す

ることがある。実際、沿岸域と深海域を結ぶ重要な堆積物運搬作用として混濁流が知られているが、その

物理機構には不明の点が多い。本研究は、堆積物の水中重力流れの発達、減速、停止の一連の過程を整合

的に記述し得る解析コードの開発を行なったものである。液状化堆積物を高密度粘性流体と理想化し、自

由表面を有する３次元重力流の解析コードを開発した。さらに、その予測能力を堆積物ダム決壊問題に照

らして検討した。 
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