複数の都市で発達する局地風循環によるエネルギー輸送

大橋唯太*·木田秀次**

* 京都大学大学院理学研究科(現:独立行政法人 産業技術総合研究所) **京都大学大学院理学研究科

要旨

複数の都市域を有する地域で形成される局地風循環のエネルギー輸送の特性について,京阪地 域を対象にして調べた。大気汚染常時監視局データの解析から,局地風循環が発達する好天静穏日 には,大阪市や京都市の都市集中地帯よりもその間に位置する郊外(吹田市・枚方市等)の方が, 日中の大気の乾燥化が顕著であることが明らかとなった。このことは,従来から指摘されている,都市 域が郊外よりも乾燥傾向にある事実とは反する結果である。この要因を解明する為に,メソスケール大 気モデルを用いて,地形配置を理想化(2つの正方形都市とそれらを囲む台地)して与えた状況で 数値実験を行なった。その結果,ヒートアイランド循環による潜熱エネルギーの輸送がそのことに大き く関与していることがわかった。郊外の乾燥化の程度は,都市間距離に依存しており,京阪地域はそ の乾燥化が顕著に現れる都市配置となっていることが指摘された。

キーワード: 京阪地域, 数値実験, 局地風循環, 熱エネルギー輸送, 都市効果

1.はじめに

大阪平野北部には,海岸に隣接した大阪市,そこから約 20 km 離れた内陸に京都市という2 つの都市集中地域を有 している。大阪市約260万,京都市約146万の人口から考え ても,昼夜を問わず活発な人間活動が予想される。都市域 はその周辺の郊外に比べて,気候学的に見ても気温が 数 程度は高く維持されており、このことはヒートアイランド 現象として昔から認識されている。これは,地表面を構成す る物性の違いから,地表面熱収支のエネルギー分配が都市 域と郊外で異なること(例えば Oke 1988),都市域では人工 排熱が存在すること等に起因する。この都市特有のヒートア イランド現象は、その場の海陸風や山谷風といった局地循 環現象,さらには大気汚染の状態に大きな影響を及ぼすこ とが、Yoshikado (1992) による関東平野を対象にした研究 で示されている。一方,冒頭で述べた大阪平野北部におい ても, Ohashi and Kida (2001)の観測から, 都市域の存在に よる海風循環構造の変形が指摘されている。

このような局地循環の変形・変質構造は,種々の局地循 環同士の相互作用によってもたらされるものとして理解がさ れてきている(例えば Yoshikado, 1992; Ohashi and Kida, 2002b)。その種々の局地循環としては,熱的生成現象であ る海陸風・山谷風・ヒートアイランド循環を挙げる事ができる。 本研究では,京阪地域で現れる種々の局地循環がもたらし ている効果について,エネルギー・物質輸送の観点から理 解を深め,特に地形配置(都市域・山地)との関連性につ いて議論を行なっていく。

2.地上比湿の時空間分布

京阪地域で展開されている大気汚染常時監視局で得られ た地上気象観測データの解析から,京阪地域の日中の水 蒸気分布には特異性があることが明らかとなった。Fig.1 は, 1992 年から 1996 年の5年間における7・8月のうち,好天静 穏日として抽出された日の平均地上水蒸気圧を描いたもの である。この図を見てもわかるように,大阪湾に隣接した大

Fig. 1 Temporal variations of the mean water vapor pressure under calm conditions, at some observational sites in Osaka plain (x-axis: time 0800 ~ 1900 JST, y-axis: water vapor pressure 20 ~ 32 hPa).

Fig. 2 Map of the Osaka plain and the surrounding area. The contours indicate every 100m above sea level. The tones indicate the covering rate of the big and tall buildings (e.g., skyscrapers, high-rise apartment complexes, etc.). The dashed rectangle means the objective region idealized for the numerical experiments.

阪市や,内陸の京都市といった大都市地域よりも,それらの 間に位置する大阪府吹田市・高槻市,京都府八幡市といっ た郊外の方が水蒸気圧の日中の低下が著しく,日較差も大 きい。これは,従来から言われている,日中の地表面熱収支 から考えた都市域の方が郊外よりも大気が乾燥する傾向 (例えば Oke 1988) とは逆であると言える。

Fig.2 に示す京阪地域の海・都市・山地を, Fig.3 のように 理想化した配置で与えた数値実験を, 3次元メソスケール大 気モデル (Ohashi and Kida 2002a)を用いて行なった。モ デルの詳細な部分は, Ohashi and Kida (2002a), 大橋・木田 (2000, 2001)に譲る。非圧縮性流体・静水圧平衡を仮定した 方程式系を用いており, 水平格子間隔は2 km, subgrid スケ ール乱流は E - モデルを採用している。また, 地表面温 度は地表面熱収支式より計算される (土壌も大気と同様, 多層モデル)。乱流フラックス等, 地表面過程の計算につい ては付録で述べておく。

Fig.4 は,その計算結果(1330 LST)を示したものである。 都市間距離 X(都市域の中心点からの距離として定義) は,大阪・京都を想定して40 kmとした。計算された地上比 湿の分布からも,都市域の間に位置する郊外上で最も大気 が乾燥する様子が再現されている。このことから,京阪地域 では都市域よりも郊外の方が日中の乾燥化が顕著になるこ とが,何らかの過程を経てもたらされていることが考えられ る。

3.郊外乾燥化の機構

郊外の乾燥化がもたらされる機構に関して,数値実験から 解明を試みた。海岸に隣接する都市域(以後,都市Aと呼 称) ·郊外(以後,都市間郊外と呼称) ·内陸の都市域 (以後,都市 B と呼称)の,あるグリッドでの大気カラム(モ デル上端までを意味する) における潜熱収支を計算してみ た。その結果,0600 LST から時間積分した地表面からの潜 熱供給量は,1300 LST には郊外が都市域の2~3倍である のに対して,大気カラムの潜熱蓄積量は都市域ではその符 号がプラス,即ち潜熱エネルギーの蓄積が存在している-方,郊外では逆にマイナスの符号,即ち潜熱エネルギーの 散逸を表していた。このことから,地表面熱収支だけから見 れば,第1章で既述した従来から言われている都市域と郊 外の乾燥関係に合致しているが,京阪地域では移流の効果 が支配的である為に,地表面での潜熱エネルギーの交換よ りもむしろ移流によって地上付近の水蒸気分布がほぼ決定 されていると言うことができる。

Fig.5 に,都市 A・都市間郊外・都市 B を代表するグリッド で計算された地上比湿の時間変化を示す。標準実験(a) を見ても明らかなように,都市間郊外のみで,正午過ぎに顕 著な比湿低下が生じている。この標準実験から都市 A・B を 取り除いた実験(b)を行なったところ,都市間郊外でのそ

Fig. 3 The configuration of the model domain. The dark and light tones indicate the urban and mountain areas, respectively. Numerals denote the km unit. X means the distance between the centers of the two urban areas.

Fig. 4 Horizontal distributions of the wind vector and specific humidity (tones and contours) near the surface at 1330 LST. The solid squares indicate the urban area. The contour interval is 0.5 g/kg.

のような低下は緩和された一方,内陸の都市 B で大きな比 湿低下が現れた。このことから,都市の存在が都市間郊外 の乾燥化,逆に都市Bの湿潤化を引き起こしていることがわ かる。都市が存在することによって、ヒートアイランド循環が 両都市域上で形成され (図省略),都市間郊外では地上付 近で水蒸気を水平発散させ,その補償として上層の乾燥空 気を流入させるような循環場を作り (Ohashi and Kida 2002a)。一方の都市 B 上では,逆に水蒸気収束を作り出し ている。標準実験から山地を取り除いて平坦地形にした実 験(c)を行なった場合でも,都市間郊外の乾燥化が緩和さ れている。山地領域では谷風循環が形成されており,地上 付近で水蒸気の水平発散、その補償として上層の乾燥空気 を取り込む循環場が,山地で囲まれた平野スケールで生み 出されようとする。従って都市間郊外では、ヒートアイランド 循環と谷風循環の両方が乾燥化を招いていることになる。こ のことが乾燥現象の顕在化を引き起こす原因となっているも のと考えられる。今まで述べてきた地上付近での水蒸気輸 送について, Fig.6 に模式図としてまとめておく。

4.エネルギー輸送と地形配置の関係

都市間郊外での乾燥化現象の程度は,海岸都市と内陸 都市の間の距離に依存しており,かつ非常に興味深い特徴 を示すことがわかった。Fig.7 に 0600 LST からの潜熱エネル ギー蓄積量の最小値(即ち乾燥化の程度を意味する)と 都市間距離 Xの関係を図示する。その位置は都市間郊外 の中心地点であり,蓄積量はそのグリッド上を鉛直方向に積 分した大気カラム量として定義する:

$$Q_{LH}(t) = \lambda \rho \int_{z_g}^{z_f} \left[q(z,t) - q_{6h}(z) \right] dz \qquad (1)$$

(:水の気化潜熱, :空気密度,q:比湿,

 z_g : 地表面高度, z_t : モデル上端高度, t: 時刻, z: 高度)

Xは16~64kmまで変化させた。標準実験(- -)で は, X=48kmの時に最も乾燥化が顕著になり,それよりも

X が大きくなると乾燥化は緩んでいく。一方で標準実験か ら都市を取り除いた実験(- -) では,乾燥化の都市間 距離に対するそのようなピークを持ってはおらず, X = 64 km まで漸増傾向を示している。このことから,そのピークは ヒートアイランド循環に起因するものと考えられ, X が 48 km よりも大きくなると,ヒートアイランド循環による乾燥化の 影響が及ばなくなっているものと推測される。つまり, X が 大きくなることで,海風循環と都市 A で発達したヒートアイラ ンド循環が内陸に移動してその位置にまで到達するのに時 間がかかり,到達した頃には既にヒートアイランド循環が衰 退段階に入っていることが主要因と考えられる。都市効果を 表す,標準実験と都市なし実験の結果の差(実線)を見て もわかるように, X が 32~48 km の時に都市の存在によっ

Fig. 5 Temporal variations of the specific humidity near the surface (20 m) for (a) the standard case (X=40 km), (b) the case where the urban areas are removed from the standard case, and (c) the case where the mountains are removed from the standard case. The solid, dashed, and dotted lines indicate the specific humidity within the coastal urban area (x=68 km, y=42 km), the suburban area (x=88 km, y=42 km), and the inland urban area (x=112 km, y=42 km), respectively.

Fig. 6 Conceptual diagram of the moisture transport near the surface.

てもたらされる乾燥化が最も大きい。従って,京阪地域は, 日中発達する局地循環が大気を乾燥させるのに最も都合が 良い都市配置 (X=40 km)と言うことができる。

一方,顕熱エネルギーの蓄積と都市間距離の関係は,上 述の潜熱エネルギーの場合と異なっている(Fig.8)。標準 実験,都市を取り除いた実験ともに, X が大きくなるにつ れて郊外での顕熱蓄積量も漸増していく。これは, X が大 きいと海風の到達時刻が遅れることによって,顕熱蓄積の継 続時間が長くなることに起因する。潜熱の場合と同様,標準 実験と都市を取り除いた実験の結果の差を取って,都市効 果を調べてみると,都市間距離が近い程その効果は最も大 きく,遠い程小さくなっていくことがわかった。このことは,都 市域に近い程,都市起源の顕熱エネルギーの影響を強く受 ける結果と推測できる。

5.おわりに

京阪地域でも、従来から指摘されている「都市域の方が郊 外よりも乾燥する傾向にある」という特徴は、地表面熱収支 の鉛直1次元だけから見れば成立する。しかしながら、この 地域では特に山地や都市配置に伴う局地循環の影響を強く 受けており、地表面での熱交換の効果を大きく越えた熱エ ネルギーの授受が移流によって行われていることがわかっ た。京阪地域の場合、都市間郊外上で谷風循環の下降流と ヒートアイランド循環のそれが重合した形で現れ、郊外の乾 燥化に大きな役割を果たしていることがわかった。また、この 乾燥化の程度は都市間距離に依存し、京阪地域の都市配 置が、大気の乾燥化に最も都合良い状況になっていることも 明らかとなった。

Fig. 7 Temporal variations of the minimum value of the accumulated latent-heat (from 0600 LST) for the standard case (- -) and the case with no urban areas (- -) at the midpoint of the suburban area between the two urban areas (this point for the no urban case is the same as that of the standard case). The solid line denotes the difference of the two cases, that is, means the urban effect. The numerals stand for the time of the minimum accumulated-latent-heat (LST).

Fig. 8 The same as Fig. 7, but for the maximum value of the accumulated-sensible-heat.

謝辞

本研究の遂行に際し,京都市・京都府・大阪府・大阪市の 大気汚染常時監視局,並びに気象庁からデータを提供して 頂きました。また,神戸商船大学・海洋機械工学講座・海洋 情報科学研究室(http://misa.kaiyou.kshosen.ac.jp/)から海 面温度のデータ提供をして頂きました。この場を借りて深謝 致します。

参考文献

- 大橋唯太・木田秀次 (2000): 京阪神地域の海陸風・山谷 風の数値シミュレーションについて - 都市と山地の効果 について - ,京都大学防災研究所年報, Vol.43B-1, pp. 249 - 257.
- 大橋唯太·木田秀次 (2001): 京阪地域の局地循環による 熱·水蒸気輸送について,京都大学防災研究所年報, Vol.44B-1,pp.113-120.
- Beljaars, A. C. M. and A. A. M. Holtslag, 1991: Flux parameterization ovesr land surface for atmospheric models. J. Appl. Meteor., Vol. 30, pp. 327 - 341.
- Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., Vol. 7, pp. 363 - 372.
- Klemp, J. B., and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., Vol. 35, pp. 78 - 107.
- Kondo, J., 1976: Heat balance of the East China Sea during the air mass transformation experiment. J. Meteor. Soc. Japan, Vol. 54, pp. 382 - 398.
- Lee, H. N., 1997: Improvement of surface flux calculation in the atmospheric surface layer. J. Appl. Meteor., Vol. 36, pp. 1416 - 1423.
- Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., Vol. 17, pp. 187 202.
- Mascart, P., J. Noilhan, and H. Giordani, 1995: A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum. Bound.-Layer Meteor., Vol. 72, pp. 331 - 344.
- Miller, M. J., and A. J. Thorpe, 1981: Radiation conditions for the lateral boundaries of limited-area numerical models. Quart. J. Roy. Meteor. Soc., Vol. 107, pp. 615 - 628.
- Oke, T . R . , 1988: The urban energy balance . Prog . Phy . Geog . , Vol . 12, pp . 471 508 .
- Ohashi, Y. and H. Kida, 2001: Observational results of the

sea breeze with a weak wind region over the northern Osaka urban area . J . Meteor . Soc . Japan, Vol . 79, pp . 949 - 955 .

- Ohashi, Y. and H. Kida, 2002a: Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor., Vol. 41, pp. 30 - 45.
- Ohashi, Y. and H. Kida, 2002b: Numerical experiments on the weak-wind region formed ahead of the sea-breeze front.J. Meteor. Soc. Japan, Vol. 80, in press.
- Uno, I., X-M. CAI, D. G. Steyn, and S. Emori, 1995: A simple extension of the Louis method for rough surface layer modeling. Bound.-Layer Meteor., Vol. 76, pp. 395 - 409.
- Yoshikado, H., 1992: Numerical study of the daytime urban effect and its interaction with the sea breeze . J. Appl. Meteor., Vol. 31, pp. 1146 1164.

付録

支配方程式系に対しての大気層の下部境界条件として, 運動量フラックス ,顕熱フラックス SH,潜熱フラックス LH が計算される。

$$\frac{\tau}{\rho} = -C_M U_a^2 \tag{A1}$$

$$\frac{SH}{c_p \rho} = -C_H U_a \left(T_a - T_s \right) \tag{A2}$$

$$\frac{LH}{\lambda\rho} = -C_H \beta U_a (q_a - q_s) \tag{A3}$$

(:空気密度, c_p:空気の定圧比熱, :水の気化潜熱,
 :土壌の蒸発効率)

U_a, *T_a*, *q_a* はそれぞれ,大気最下層格子でのスカラー風速, 温度,比湿を示し,また *q_s* は地表面温度 *T_s* での飽和比湿を 表す。

運動量バルク交換係数 *C_M* と熱・水蒸気バルク輸送係数 *C_H* (熱と水蒸気は等しいと仮定している) は

$$C_{M} = \frac{k^{2}}{\left[\ln\left(\frac{x_{3}}{z_{0}}\right) - \psi_{M}\left(\frac{x_{3}}{L}, \frac{z_{0}}{L}\right)\right]^{2}}$$
(A4)
$$C_{H} = \frac{k^{2}}{\left[\ln\left(\frac{x_{3}}{z_{0}}\right) - \psi_{M}\left(\frac{x_{3}}{L}, \frac{z_{0}}{L}\right)\right] \left[\ln\left(\frac{x_{3}}{z_{0}}\right) - \psi_{H}\left(\frac{x_{3}}{L}, \frac{z_{0}}{L}\right)\right]}$$
(A4)

(A5)

(k: Von Karman 定数 = 0.4, z_0 : 粗度長, L: Monin-Obukhov

の長さスケール, x₃:大気モデル第1層高度, z₀:粗度長) で与えられる。積分普遍関数 _Mと_Hは,大気の成層状態 が安定である時には Beljaars and Holtslag (1991),不安定 時は Dyer (1974) の式を使用している。 不安定時:

$$\psi_{M}(\zeta) = \ln\left[\left(\frac{1+\phi_{m}^{-1}}{2}\right)^{2}\left(\frac{1+\phi_{m}^{-2}}{2}\right)\right] - 2\arctan\left(\phi_{m}^{-1}\right) + \frac{\pi}{2}$$
(A6)

$$\psi_{H}\left(\zeta\right) = \ln\left[\left(\frac{1+\phi_{h}^{-1}}{2}\right)^{2}\right]$$
(A7)

ここで, "と ,は普遍関数であり,以下のように与えられる。

$$\phi_m = (1 - 16\zeta)^{-1/4} \tag{A8}$$

$$\phi_h = (1 - 16\zeta)^{-1/2} \tag{A9}$$

安定時:

$$\psi_{M}(\zeta) = -\left[a\zeta + b\left(\zeta - \frac{c}{d}\right)\exp\left(-d\zeta\right) + \frac{bc}{d}\right] \quad (A10)$$

$$\psi_{H}(\zeta) = -\left[\left(1 + \frac{2a}{3}\zeta\right)^{3/2} + b\left(\zeta - \frac{c}{d}\right)\exp\left(-d\zeta\right) + \frac{bc}{d} - 1\right] \quad (A11)$$

ここで , a = 1 , b = 0.667 , c = 5 , d = 0.35 である。

は, x_3/L , z_0/L を表しており,その中の長さ L は摩擦速度 u_* と摩擦温度 *の関数であるが,これらは直接,運動量, 熱フラックスと関係した物理量である為,通常は,(A1) -(A5)を通して繰り返し法などの数値的解法が要求される。 最近では,計算コストを考えて L をバルク Richardson 数など の既知量でパラメタライズする方法が開発され,数値解を逐 次求めていくことが避けられるようになってきた (例えば Louis, 1979; Mascart et al., 1995; Uno et al., 1995)。このモデ ルでは,上記の Dyer と Beljaars and Holtslag の関数形に対 しての近似解 (Lee, 1997)を採用して,計算コストの軽減を 図っている。

不安定時:

地表面温度 T_sは,以下の地表面熱収支式から計算される。

$$SR(1-\alpha) + LR_{air} = LR_{sfc} + SH + LH + GH$$
(A6)

下向きの短波放射フラックス SR は、太陽天頂角から計算され、また水蒸気の Rayleigh 散乱効果を経験式として取り入れたもの(Kondo, 1976)を用いている。下向きの長波放射

フラックス LR_{air}は,高度 110 m の気温,水蒸気量の関数とした経験式 (Kondo, 1976)を用いている。一方で,上向き長 波放射 LR_{sfc} と地中熱フラックス GH は,次式で与えられる。

$$LR_{sfc} = \varepsilon_e \sigma T_s^4 \tag{A7}$$

(e:射出率, :Stefan-Boltzmann 定数)

$$\frac{GH}{c_g \rho_g} = -K_g \left(\frac{\partial T_g}{\partial x_3}\right)_{z=0}$$
(A8)

(*c_s*:土壌比熱, _s:土壌密度, *K_s*:土壌熱拡散係数) この数値モデルでは,土壌についても大気層と同様に多層 モデルを仮定しており,

$$\frac{\partial T_g}{\partial t} = K_g \frac{\partial^2 T_g}{\partial x_3^2} \tag{A9}$$

の一次元熱伝導方程式から地中温度 T_gを予報している。

下部・上部境界ともノースリップ条件としている。スカラー 量に関しては,上部境界でゼロ勾配条件が採用されている。 側面境界条件については,格子側面に対して接線方向の 速度成分とスカラー量はゼロ勾配,一方,格子側面に対して 法線方向の速度成分は,モデル内で発生する波の壁面反 射を極力抑えて,自由に境界を通過できるようにした放射境 界条件 (Miller and Thorpe, 1981) が使われている。放射 境界条件は,境界で次式の1次元移流方程式を解くことに なる。

$$\frac{\partial u}{\partial t} = -c \frac{\partial u}{\partial x} \tag{0.1}$$

cは代表的位相速度である。(5.1)式は,

$$u_{x_b}^{t+\Delta t} = u_{x_b}^t \left(1 - \gamma\right) + \gamma u_{x_b-\Delta x}^t \tag{0.2}$$

(x_b:境界格子点, x_b - x:x_bの一つ内側の格子点) のように差分化される。ここで, (= c t/ x)は,

$$\gamma = \frac{u_{x_{b}-\Delta x}^{t} - u_{x_{b}-\Delta x}^{t-\Delta t}}{u_{x_{b}-\Delta x}^{t-\Delta t} - u_{x_{b}-\Delta x}^{t-\Delta t}}$$
(0.3)

で与えられる。ただし,0 1とする。

上方伝播する波を吸収したり,上部境界面での波の反射 を防ぐ為に,モデル領域の約上半分をスポンジ層としている。 初期値からの摂動成分を減衰させるように働く項が,支配方 程式系に付加される (Klemp and Lilly, 1978)。

Energy Transport by the Local Circulations Developed in the Vicinity of Multi-Urban Areas

Yukitaka OHASHI* and Hideji KIDA**

*Graduate School of Science, Kyoto University (Present affiliation: National Institute of Advanced Industrial Science and Technology) **Graduate School of Science, Kyoto University

Synopsis

We investigated characteristics of the energy transport by the local circulations in the vicinity of multi-urban areas: the Keihan region. From the data analysis of the air quality monitoring system established in the Keihan region, it was clarified that the atmosphere over the Osaka and Kyoto urban areas was not drier than that over the suburban area (e.g., Suita and Hirakata cities) located between those urban areas, during the daytime hours under clear and calm conditions. This result is opposite to the fact that urban areas are drier than suburban areas, as so far reported by many researchers. To elucidate the dryness of the suburban areas in the Keihan region, the numerical experiments, which idealized the geography of this region to two square-urban areas and a plateau surrounding those urban areas, were conducted using a 3D mesoscale atmospheric model. It was found from the result that the latent-heat-energy transport by the heat-island circulations contributed greatly to the dryness of the suburban areas. Furthermore, it was indicated that a degree of the dryness depends on the distance between the two urban areas, and this dryness was notable for the urban distance appeared in the Keihan region.

Keywords: Keihan region, numerical experiment, local circulation, heat-energy transport, urban effects