OBSERVATIONS OF THE EARTH TIDES AT YURA
(OBSERVATION SYSTEM AND TIDAL FACTORS)

By Masaaki Kato, Torao Tanaka and Yoshinobu Hoso

Synopsis

Telemetering system for monitoring crustal deformations has started into operation in October 1982 at the Yura Observation Station, Wakayama Prefecture. Twenty-four signals of crustal strains and tills observed with strainmeters and tiltmeters, and of other geophysical data are transmitted to the Disaster Prevention Research Institute by a telephone line with the data signalling rate of 50 bits/sec.

In this paper, firstly the structures of observing instruments and their electronic circuits are described. Both the magnetic sensors and differential transformers are adopted as transducers of strainmeters and tiltmeters. Secondly tidal factors obtained by using the data from October 6, 00h00m to December 31, 23h00m, 1984 are shown. It has become clear that the values expressing the ratio of observed to theoretical amplitudes for M_s constituent distribute in the range of 0.3~2.6.

1. ま え が き

由良地殻変動観測室（137°07′E, 33°57′N）が設置された1951年から1978年までの28年間におよぶ観測結果についてはすでに報告されている(1)。その後, 第4次地震予知研究5年間計画の事業の一環として, 観測点を数 10 km 間隔で延長 100~200 km にわたって線に配列する「地殻変動観測網」が全国重要地域に設定されることになり, 京都大学においては, 北陸新線と近畿新線の 2 本の線が昭和56年度から58年度にかけて設置された。各観測点のデータは, 日本電信電話会社（NTT）の専用回線を用いて 1 分サンプリングで宇治センターへ搬送・収録されている。詳細は京都大学の地殻変動観測網に関する総合報告（予定）にゆずる。この計画により由良観測室では1982年10月より地殻変動データの宇治センターへの搬送が開始された。

本論文では, 最初にテレメータ化に伴い新しく設置された観測計器ならびに観測システムについて記述する。次に, 宇治センターで得られている記録の例を示す。観測計器ならびに伸縮計で得られたデータについては最小二乗法を用いた解析(2)により潮汐定数を決定し, 理論潮汐と同じ方法で解析した結果と比較する。

2. 観測計器および観測システム

由良観測室から宇治センターへ搬送されたデータは U 1400 ミニコンピュータ・システムの固定ディスクにディジタル収録されると同時に, 24成分中12成分はフルスケールが 0 ～ ± 5 V の時分割打点記録計にアナログ出力（25 mm/hour）される。アナログ出力 0 ～ ± 5 V はディジタル出力の 0 ～ ± 1000 digits に対応している。
観測器の配置、感度などは Fig. 1 および Table 1 に示してある。

2.1 差動トランス伸縮計

デリメータ化以前の1974年よりすでに観測を開始している。ファンクションジェネレータ IC8038（イン

Fig. 1 Observation vault and the installation of instruments. EXTO: Strainmeter with differential transformer. EXT: Strainmeter with magnetic sensor. WT: Watertube tiltmeter. TEMP: Thermometer. As to the detail of instruments refer to Table 1.

Table 1 Constants of the instruments in Yura

<table>
<thead>
<tr>
<th>Instrument symbol</th>
<th>Direction</th>
<th>Sign</th>
<th>Span</th>
<th>Input range for FATEC205 0~</th>
<th>Magnification of auto-zero circuit</th>
<th>Sensitivity D: digit S: step</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT-NS</td>
<td>N 9°W</td>
<td>Extension (−)</td>
<td>624 cm</td>
<td>+−50mV</td>
<td>5.000</td>
<td>1.621 E−10/D</td>
</tr>
<tr>
<td>EXT-NW</td>
<td>N 43°W</td>
<td>Extension (−)</td>
<td>1452 cm</td>
<td>+−50mV</td>
<td>2.360</td>
<td>1.403 E−10/D</td>
</tr>
<tr>
<td>EXT-NE(C)</td>
<td>N 42°E</td>
<td>Extension (+)</td>
<td>1165 cm</td>
<td>+−50mV</td>
<td>2.360</td>
<td>2.280 E−10/D</td>
</tr>
<tr>
<td>EXT-NE(E)</td>
<td>N 42°E</td>
<td>Extension (−)</td>
<td>3102 cm</td>
<td>+−50mV</td>
<td>1.040</td>
<td>1.214 E−10/D</td>
</tr>
<tr>
<td>EXTO-EW</td>
<td>N 85°E</td>
<td>Extension (+)</td>
<td>500 cm</td>
<td>+−50mV</td>
<td>0.555</td>
<td>0.929 E−09/D</td>
</tr>
<tr>
<td>EXTO-NS</td>
<td>N 5°W</td>
<td>Extension (+)</td>
<td>500 cm</td>
<td>+−50mV</td>
<td>0.560</td>
<td>1.123 E−09/D</td>
</tr>
<tr>
<td>EXTO-NWW</td>
<td>N 60°W</td>
<td>Extension (+)</td>
<td>600 cm</td>
<td>+−50mV</td>
<td>0.551</td>
<td>1.469 E−09/D</td>
</tr>
<tr>
<td>WT12</td>
<td>N 42°E</td>
<td>Down (−)</td>
<td>1794 cm</td>
<td>+−50mV</td>
<td>0.306</td>
<td>0.871 E−09/D</td>
</tr>
<tr>
<td>WT34</td>
<td>N 51°W</td>
<td>Down (−)</td>
<td>1396 cm</td>
<td>+−50mV</td>
<td>0.306</td>
<td>1.119 E−09/D</td>
</tr>
<tr>
<td>VP-1</td>
<td>N270°E</td>
<td>Down (−)</td>
<td>25 cm</td>
<td>+−50mV</td>
<td>5.054</td>
<td>0.719 E−09/D</td>
</tr>
<tr>
<td>VP-2</td>
<td>N 0°E</td>
<td>Down (−)</td>
<td>25 cm</td>
<td>+−50mV</td>
<td>2.402</td>
<td>1.518 E−09/D</td>
</tr>
<tr>
<td>TEMP-1</td>
<td></td>
<td>Increase (+)</td>
<td></td>
<td>+−10mV</td>
<td>0.0001</td>
<td>0.0005 °C/D</td>
</tr>
<tr>
<td>TEMP-2</td>
<td></td>
<td>Increase (+)</td>
<td></td>
<td>+−50mV</td>
<td>0.0005</td>
<td>0.001 °C/D</td>
</tr>
<tr>
<td>TEMP-3</td>
<td></td>
<td>Increase (+)</td>
<td></td>
<td>+−10mV</td>
<td>0.001</td>
<td>0.001 °C/D</td>
</tr>
<tr>
<td>TEMP-4</td>
<td></td>
<td>Increase (+)</td>
<td></td>
<td>+−10mV</td>
<td>0.001</td>
<td>0.001 °C/D</td>
</tr>
<tr>
<td>PRESSURE</td>
<td></td>
<td>Increase (+)</td>
<td></td>
<td>+−50mV</td>
<td>0.1</td>
<td>mb/D</td>
</tr>
<tr>
<td>PRECIP</td>
<td></td>
<td>Increase (+)</td>
<td></td>
<td>+−10mV</td>
<td>0.5</td>
<td>mm/S</td>
</tr>
</tbody>
</table>
ターシルを用いる）の正弦波出力で差動トランスの1次側のコイルを励磁している。2次側の2個のコイルの出力はそれぞれオペレーショナルアンプで増幅・整流した後に加算し、変位に対してlinearな直流出力電圧を得ている。この回路を DC-AMP方式と呼ぶことにする。1983年9月22日、従来からの坑内でのアナログ記録を廃止し、自動零点調整回路を増設して FATEC 205送信装置（富士電機製作所製作）に接続し、デジタル送信を開始した。

2.2 マグネセンサの作成
トランスデューサにマグネセンサをセットB3（ソニー型マグネスクール計）を用いている。Fig.2に検出器の設置図（原稿は京都大学防災研究所の元技官の渋川吉男氏作成）を示す。マグネセンサのマグネタートは直径0.19mmのステンレス線によって直径10mmのスーパーミニパール棒にできるだけ長く加わらないように薄い2枚の鋼板パネ（厚さ60μ）によって支えられている。一方、ヘッドはやや厚い鋼板パネ（厚さ0.13mm）によって支えられている。マイクロメータでヘッドに変位を与えることにより感度検定を行なうことができる。マグネットとヘッドとの間隔(クリアランス)が変化しない構造になっているため精度が時間的に変動しないことがこの変換部の特徴である。1982年10月15日に送信を開始した。

2.3 フロート型マグネセンサの水深計
この傾斜計の検出部は、上記地殻変動観測所に設置しているものと同一ものである。但し、上記では3つの検出部をL字型に連結しているのに対し、本例ではWT1とWT2でWT12成分、WT3とWT4でWT34成分を形成している点が異なる。坑道内の高低差が大きいためにこのような措置を取らざるを得なかった。1983年5月19日に断送を開始した。

2.4 差動トランス鉛直振子傾斜計

Fig. 2 Detector of strainmeter (magnetic sensor type)
この傾斜計は、検子型傾斜計としては最も単純であり、器機的に安定しているが、気温の増幅にすべてを依存しているため、温度に対する出力変動が極めて大きいことが要求される。ここでは、2.1で述べた DC AMP 方式とは別個の回路を使用している。2つのコイルは直列に接続され、AC 増幅された後整流される。このまでは、温度に対する出力変動が V 字型となり常に正の値となるので、負の温度を加算して変位に対する出力変動が2倍で分るようにしている。DC、AC のどちらの方式においても超低オフセット電圧のオペレーションアンプ OP 07 PMI 社製を使用し、時間的ドリフトが生じないよう配慮している。1982年10月15日に搬送を開始した。

2.5 気圧計

ベローズに差動トランスのコアを取付け変位に対して線形な出力変動が得られるようにしてある。電子回路には DC-AMP 方式を採用している。

2.6 温度計

使用している温度センサ IC は μPC 616A（メタルカプル型、NEC 社製）である。10 mV/K の温度に比例した出力が得られ線型性に優れている。

2.7 自動零点調整回路

垂直・傾斜を高感度で記録する場合、信号が記録可能な電圧範囲からはずれた時に、一定のステップ圧を自動的に与え、常時記録がスケールアウトしないようにする回路を設けておることが不可欠である。山田では、防災科学技術センターの岡田義光博士が以前発表された回路10を多少変更して使用している。回路図を Fig. 3 に、写真を Photo 1 に示す。この回路の初段は高入力インピーダンスの非反転増幅アンプ（OP 07 使用）であり、各々のセンサからの出力圧を必要に応じて増幅できるようにになっている。最終段アンプの出力圧は 0 ～ 1 V

![Photo 1 Auto-zero-adjustable circuit](image-url)

Fig. 3 Diagram of auto-zero-adjustable circuit (with main-amp and high-cut filter)
ので、送量装置 FATEC 205 の入力レンジに合わせて R1, R2 を選択してやる必要がある。ロータリースイッチには接点数24の超小型電磁ロータリースイッチ、ミニロット MR-1, 12 F（信利興業株式会社製）が使われている。駆動電圧は 12 V, 消費電流は 444 mA である。IC（1～8）にはデュアル741型の IC4 個を使用している。IC 用直流安定化電源の消費電流は +15 V 側が 11.8 mA, −15 V 側が 12.6 mA である。

3. 観測記録の例

Fig. 4(a), (b), (c) ならびに (d) に毎時のディジタルデータを使って得られた観測記録の例（1984年10月6日0時～12月31日23時）を示す。自動零点調整回路が動作したために生じたステップや計器調整などによって生じたステップはすべて補正している。また、予兆センターの除去などによって生じたパルス状のノイズはできるだけ除去してある。TEMP-3 の短周期変動は送信室の除湿器の ON-OFF によるものである。送信室とは対面の倉庫の入口付近に設置してある EXT-NW, WT 34 ならびに EXTO-NWW には雨の影響が顕著に現われている。従来から使用されている EXTO-EW と EXTO-NS の直線的な偏り変化はあるいはスラープ・インバール棒が老朽化したことに基づるものかもしれない。今後の検討課題としたい。

![Fig. 4 Secular changes of tilts, strains, atmospheric temperature, atmospheric pressure and precipitation at Yura. All the changes are drawn by using hourly values during the period from Oct. 06, 00h00m to Dec. 31, 23h00h, 1984, (JST).](image)

(a): Precipitation and atmospheric temperatures.
(b): Strainmeters with magnetic sensor.
(c): Water-tube and vertical pendulum tiltmeters.
(d): Strainmeters with differential transformer and atmospheric pressure.
4. 地球潮汐解析

Fig. 4 に示されたデータに Pertzev のフィルタを適用し潮汐の周期数帯のみを取り出した結果を Fig. 5 (a), (b) ならびに (e) に示す。Fig. 6 と Fig. 7 には起潮カポテンシャルから求められる理論固体地球潮汐ひずみおよび傾斜曲線を Harrison のプログラムを使用して描いている。EXTO-EW の横軸640.00 (時間) 付近にパルス状のノイズが見られる。このようなノイズはある程度は他の成分にも見られる。データのつなぎ方で不備な点があったと考えられ、再検討する必要がある。このような問題を含んでいるが、Fig. 4 に示されたデータに Pertzev のフィルタを適用した後に、M_2, S_2, K_1, O_1, N_2, K_2 および気象潮 S_1 を仮定して最小二乗法で振幅と位相を決定した。最小二乗法の解析には京都大学理学部の中川一郎博士のプログラムを利用させて頂いた。理論潮汐についても同様の方法で振幅と位相を決定した。これらの結果を Table 2, 3 および 4 にまとめた。

M_2 分潮に着目すると、傾斜では理論値に対する観測値の比の値が0.5から2.6の範囲に、伸縮では0.3から1.3の範囲に分布していることがわかる。また、傾斜では N-S 方向の潮汐の振幅が短く立って小さいこと、伸縮では NE (C) と NE (E) が同じ方向の成分で同じ基準值を使用しているにもかかわらず、前者（中央部）が後者（端）に比べて約20%小さいことが明らかになった。坑道の中央部（水管傾斜計 PT2）が設置されている部屋は厚いコンクリートで巻きつけて強化されている。このことによる影響が現われている可能性が強いと思われる。由良観測室は海岸からわずか 300 m の距離に位置しており海洋潮汐の影響もかなり大きいと考えられる。海洋潮汐、地形、坑道さらには地質構造などの影響を明確にしてゆくことが今後の研究課題として残されている。
5. あとがき

第4次地殻変動予知研究5年計画の事業の一環として地殻活動観測線が設置された。この観測線を構成する観測点の1つである由良観測室のテレメータによるデータ搬送が1982年10月より開始された。本報告ではテレメータ化に伴い強化された観測記録ならびに観測システムに関してかなり詳細にわたって紹介した。これらの計器を用いて、高感度で安定した時間精度の高いデータが防災研究所へ搬送・収録されている。全成分が安定した記録されている期間のデータを用いて潮汐解析を行ない、結果を表にしてまとめた。これらの結果は、今後の地球潮汐解析のための貴重な基礎資料となり得るものである。テレメータ・システムを導入するにあたり御協力頂いた関係各位に深く感謝したい。本報告のための数値計算、図の作成は防災研究所付属防災科学資料センターの電子計算機によったことを付記する。

なお、枝正の段階においてEXT-NWの変換部に欠陥が発見された。当時の感度を正確に求めるためはもっとや不可能である。変換部修理後の約20日間の記録を解析した結果ではM2とO1、分潮の振幅が3倍程度大きく求まっている。本論文ではあえて投稿時のままの図と表を掲載しているので注意して頂きたい。次の機会に訂正する所存である。

Fig. 5 Records during the period from Oct. 06, 18h00m to Dec. 31, 05h00m, 1984, (JST) after the removal of the drifts by the Pertsev's filter using the data shown in Fig. 4.
(a): Strainometers with differential transformer and atmospheric pressure.
(b): Strainmeters with magnetic sensor.
(c): Water-tube and vertical pendulum tiltmeters.
Fig. 6 Theoretical solid tickal strains in five directions during the period from Oct. 06, 18h00m to Dec. 31, 03h00m, 1984, (JST) (computed by Harrison's program)

参考文献

2) 中川一郎・佐藤泰夫：最小自乗法による変形変位の解析, 津波学会誌, 第12巻, 第2号, 1966, pp. 71-76.
4) 加藤正明・津崎吉男・土居光：鉛直振子傾斜計について, 津波学会第58回講演会要旨, 1982, pp. 91-92.
5) 山内常生・山原守：地殻変動連続観測用電子回路の L.C. 化, 津波学会誌, 第20巻, 第3号, 1974, pp. 143-145.
6) 東京大学地震研究所内部資料（岡田義光）：地殻変動観測所標準観測方式, 1977.
Fig. 7 Theoretical solid tidal tilts in four directions (presented as in Fig. 6)
<table>
<thead>
<tr>
<th>Instrument Symbol</th>
<th>Direction</th>
<th>Constituent</th>
<th>Observed Amplitude (strain)</th>
<th>Phase (rad)</th>
<th>Theoretical Amplitude (strain)</th>
<th>Phase (rad)</th>
<th>Amplitude ratio (Obs./Theor.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT-NS</td>
<td>N 9°W</td>
<td>M2</td>
<td>0.1092E-07</td>
<td>1.993</td>
<td>0.1331E-07</td>
<td>-1.960</td>
<td>0.820</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2</td>
<td>0.4453E-08</td>
<td>-3.006</td>
<td>0.6693E-08</td>
<td>-0.131</td>
<td>0.671</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.6535E-08</td>
<td>-0.765</td>
<td>0.6095E-08</td>
<td>1.903</td>
<td>1.072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.7848E-08</td>
<td>0.062</td>
<td>0.4690E-08</td>
<td>2.096</td>
<td>1.673</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.2208E-08</td>
<td>-1.951</td>
<td>0.2477E-08</td>
<td>0.305</td>
<td>0.891</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.1096E-08</td>
<td>-3.058</td>
<td>0.2009E-08</td>
<td>-0.429</td>
<td>0.546</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.4244E-08</td>
<td>2.881</td>
<td>0.3615E-08</td>
<td>-0.422</td>
<td>1.174</td>
</tr>
<tr>
<td>EXT-NW</td>
<td>N43°W</td>
<td>M2</td>
<td>0.3319E-08</td>
<td>1.590</td>
<td>0.1033E-07</td>
<td>-2.217</td>
<td>0.321</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2</td>
<td>0.1461E-08</td>
<td>-2.952</td>
<td>0.5145E-08</td>
<td>-0.388</td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.2113E-08</td>
<td>-0.820</td>
<td>0.8159E-08</td>
<td>2.132</td>
<td>0.259</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.2415E-08</td>
<td>0.322</td>
<td>0.6277E-08</td>
<td>-2.959</td>
<td>0.385</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.6572E-09</td>
<td>-2.052</td>
<td>0.1902E-08</td>
<td>0.051</td>
<td>0.346</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.5550E-09</td>
<td>2.511</td>
<td>0.1561E-08</td>
<td>-0.685</td>
<td>0.256</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.4381E-09</td>
<td>2.705</td>
<td>0.4847E-08</td>
<td>-0.193</td>
<td>0.904</td>
</tr>
<tr>
<td>EXT-NE(C)</td>
<td>N42°E</td>
<td>M2</td>
<td>0.3717E-08</td>
<td>-0.631</td>
<td>0.1048E-07</td>
<td>-1.542</td>
<td>0.355</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2</td>
<td>0.2208E-08</td>
<td>0.553</td>
<td>0.5224E-08</td>
<td>0.286</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.4963E-08</td>
<td>1.486</td>
<td>0.8098E-08</td>
<td>1.339</td>
<td>0.613</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.4258E-08</td>
<td>2.704</td>
<td>0.6224E-08</td>
<td>2.531</td>
<td>0.684</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.6389E-09</td>
<td>1.770</td>
<td>0.1978E-08</td>
<td>0.727</td>
<td>0.323</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.3882E-09</td>
<td>1.234</td>
<td>0.1582E-08</td>
<td>-0.012</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.2952E-08</td>
<td>1.873</td>
<td>0.4805E-08</td>
<td>-0.989</td>
<td>0.614</td>
</tr>
<tr>
<td>EXT-NE(E)</td>
<td>N42°E</td>
<td>M2</td>
<td>0.4685E-08</td>
<td>2.464</td>
<td>0.1048E-07</td>
<td>-1.542</td>
<td>0.447</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2</td>
<td>0.2362E-08</td>
<td>-2.711</td>
<td>0.5224E-08</td>
<td>0.286</td>
<td>0.452</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.5332E-08</td>
<td>-1.795</td>
<td>0.8098E-08</td>
<td>1.339</td>
<td>0.683</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.4617E-08</td>
<td>-0.471</td>
<td>0.6224E-08</td>
<td>2.531</td>
<td>0.742</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.8627E-09</td>
<td>-1.338</td>
<td>0.1978E-08</td>
<td>0.727</td>
<td>0.436</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.3904E-09</td>
<td>-2.401</td>
<td>0.1582E-08</td>
<td>-0.012</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.2427E-08</td>
<td>1.458</td>
<td>0.4805E-08</td>
<td>-0.989</td>
<td>0.505</td>
</tr>
</tbody>
</table>

Notes: Period of analysis; Oct. 06, 00h00m~Dec. 31, 23h00m, 1984, (JST). The phase is the value of \(\varphi \) in a cos \((\omega \cdot t - \varphi)\), in which the time origin is adopted as Oct. 07, 00h00m, 1984, (JST).
Table 3 Results from the tidal analyses of observed and theoretical strains (2)
(presented as in Table 2)

<table>
<thead>
<tr>
<th>Instrument symbol</th>
<th>Direction</th>
<th>Constituent</th>
<th>Observed Amplitude (strain)</th>
<th>Observed Phase (rad)</th>
<th>Theoretical Amplitude (strain)</th>
<th>Theoretical Phase (rad)</th>
<th>Amplitude ratio (Obs./Theor.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M2</td>
<td>0.4842E−08 −1.785</td>
<td></td>
<td>0.5441E−08 −1.758</td>
<td>0.890</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2</td>
<td>0.2181E−08 −1.647</td>
<td></td>
<td>0.2711E−08 0.072</td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td>EXTO-</td>
<td>N85°E</td>
<td>K1</td>
<td>0.7011E−08 1.455</td>
<td></td>
<td>0.9411E−08 1.674</td>
<td>0.818</td>
<td></td>
</tr>
<tr>
<td>EW</td>
<td></td>
<td>O1</td>
<td>0.5819E−08 −3.106</td>
<td></td>
<td>0.7241E−08 2.866</td>
<td>0.804</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.8417E−09 0.522</td>
<td></td>
<td>1.0204E−09 0.539</td>
<td>0.825</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.7090E−09 −0.020</td>
<td></td>
<td>0.8231E−09 −0.228</td>
<td>0.861</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.3382E−08 1.156</td>
<td></td>
<td>0.5586E−08 −0.652</td>
<td>0.605</td>
<td></td>
</tr>
<tr>
<td>EXTO-</td>
<td>N 5°W</td>
<td>M2</td>
<td>0.1304E−07 −1.066</td>
<td></td>
<td>0.1343E−07 −1.924</td>
<td>0.971</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td></td>
<td>S2</td>
<td>0.4426E−08 0.418</td>
<td></td>
<td>0.6689E−08 −0.096</td>
<td>0.662</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.6400E−08 2.383</td>
<td></td>
<td>0.5978E−08 1.834</td>
<td>1.071</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.9089E−08 3.091</td>
<td></td>
<td>0.4599E−08 3.027</td>
<td>1.976</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.2607E−08 1.361</td>
<td></td>
<td>0.2501E−08 0.340</td>
<td>1.042</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.1996E−08 0.158</td>
<td></td>
<td>0.2026E−08 −0.393</td>
<td>0.985</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.5645E−08 −0.182</td>
<td></td>
<td>0.3543E−08 −0.491</td>
<td>1.593</td>
<td></td>
</tr>
<tr>
<td>EXTO-</td>
<td>N60°W</td>
<td>M2</td>
<td>0.1001E−07 −1.655</td>
<td></td>
<td>0.8016E−08 −2.263</td>
<td>1.249</td>
<td></td>
</tr>
<tr>
<td>NW</td>
<td></td>
<td>S2</td>
<td>0.2456E−08 −0.625</td>
<td></td>
<td>0.3990E−08 −0.434</td>
<td>0.616</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.8644E−08 2.119</td>
<td></td>
<td>0.8959E−08 2.049</td>
<td>0.965</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.8500E−08 −2.952</td>
<td></td>
<td>0.6892E−08 −3.042</td>
<td>1.233</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.1667E−08 0.813</td>
<td></td>
<td>0.1468E−08 0.011</td>
<td>1.136</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.2222E−08 −0.517</td>
<td></td>
<td>0.1211E−08 −0.731</td>
<td>1.835</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.3269E−08 0.055</td>
<td></td>
<td>0.5323E−08 −0.276</td>
<td>0.641</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 Results from the tidal analyses of observed and theoretical tilts (presented as in Table 2)

<table>
<thead>
<tr>
<th>Instrument symbol</th>
<th>Direction</th>
<th>Constituent</th>
<th>Observed Amplitude (rad)</th>
<th>Observed Phase (rad)</th>
<th>Theoretical Amplitude (rad)</th>
<th>Theoretical Phase (rad)</th>
<th>Amplitude ratio (Obs./Theor.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT12</td>
<td>N42°E</td>
<td>M2</td>
<td>0.8750E-07</td>
<td>1.059</td>
<td>0.3383E-07</td>
<td>2.274</td>
<td>2.586</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2</td>
<td>0.3484E-07</td>
<td>-2.992</td>
<td>0.1679E-07</td>
<td>-2.181</td>
<td>2.075</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.5605E-07</td>
<td>-1.399</td>
<td>0.1476E-07</td>
<td>0.832</td>
<td>3.797</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.4929E-07</td>
<td>-0.407</td>
<td>0.1135E-07</td>
<td>2.021</td>
<td>4.943</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.1766E-07</td>
<td>-2.074</td>
<td>0.6103E-08</td>
<td>-1.725</td>
<td>2.894</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.1047E-07</td>
<td>2.939</td>
<td>0.5068E-08</td>
<td>-2.471</td>
<td>2.058</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.3080E-07</td>
<td>2.635</td>
<td>0.8871E-08</td>
<td>-1.497</td>
<td>3.472</td>
</tr>
<tr>
<td>WT34</td>
<td>N51°W</td>
<td>M2</td>
<td>0.6860E-07</td>
<td>1.114</td>
<td>0.3669E-07</td>
<td>-3.021</td>
<td>1.870</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2</td>
<td>0.3663E-07</td>
<td>-2.898</td>
<td>0.1826E-07</td>
<td>-1.189</td>
<td>2.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.2790E-07</td>
<td>-1.862</td>
<td>0.1575E-07</td>
<td>-0.347</td>
<td>1.771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.3001E-07</td>
<td>-0.771</td>
<td>0.1205E-07</td>
<td>0.846</td>
<td>2.490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.1432E-07</td>
<td>-2.949</td>
<td>0.7006E-08</td>
<td>-0.726</td>
<td>2.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.1097E-07</td>
<td>2.512</td>
<td>0.5557E-08</td>
<td>-1.484</td>
<td>1.974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.1312E-07</td>
<td>0.815</td>
<td>0.9282E-08</td>
<td>-2.686</td>
<td>1.413</td>
</tr>
<tr>
<td>VP-1</td>
<td>N27°E</td>
<td>M2</td>
<td>0.1026E-06</td>
<td>1.098</td>
<td>0.4318E-07</td>
<td>-0.306</td>
<td>2.376</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2</td>
<td>0.4520E-07</td>
<td>-2.893</td>
<td>0.2145E-07</td>
<td>1.524</td>
<td>2.107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.5050E-07</td>
<td>-1.515</td>
<td>0.1764E-07</td>
<td>-2.976</td>
<td>2.862</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.5093E-07</td>
<td>-0.576</td>
<td>0.1354E-07</td>
<td>-1.782</td>
<td>3.714</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.2178E-07</td>
<td>-3.067</td>
<td>0.8032E-08</td>
<td>1.998</td>
<td>2.711</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.1531E-07</td>
<td>2.862</td>
<td>0.6525E-08</td>
<td>1.232</td>
<td>2.347</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.2582E-07</td>
<td>2.298</td>
<td>0.1045E-07</td>
<td>0.978</td>
<td>2.470</td>
</tr>
<tr>
<td>VP-2</td>
<td>N 0°E</td>
<td>M2</td>
<td>0.1177E-07</td>
<td>-2.508</td>
<td>0.2401E-07</td>
<td>1.266</td>
<td>0.490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2</td>
<td>0.4862E-08</td>
<td>0.911</td>
<td>0.1196E-07</td>
<td>3.093</td>
<td>0.406</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K1</td>
<td>0.1975E-07</td>
<td>2.041</td>
<td>0.1219E-07</td>
<td>1.745</td>
<td>1.620</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O1</td>
<td>0.1536E-07</td>
<td>3.046</td>
<td>0.9325E-08</td>
<td>2.932</td>
<td>1.648</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>0.3554E-08</td>
<td>-0.704</td>
<td>0.4490E-08</td>
<td>-2.780</td>
<td>0.791</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K2</td>
<td>0.5338E-09</td>
<td>-0.325</td>
<td>0.3615E-08</td>
<td>2.796</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1</td>
<td>0.1872E-07</td>
<td>-0.269</td>
<td>0.7320E-08</td>
<td>-0.602</td>
<td>2.558</td>
</tr>
</tbody>
</table>