低緯度におけるハリケーン Pali (2016) 発達過程の特徴 Characteristics of Hurricane Pali (2016) Intensification at Low Latitudes.

○吉岡大秋・榎本 剛○Hiroaki YOSHIOKA, Takeshi ENOMOTO

This study focuses the intensity of Hurricane PALI under weak Coriolis force which was occurred at 4.4°N on 7 January 2016. We conducted the downscale experiments using the nonhydrostatic meso-scale numerical model, WRF, with horizontal resolution of 10 km. The initial states were derived from 11 ensemble members of NOAA's 2nd-generation global ensemble reforecast dataset. A previous study which experimented with the same settings point out the features of the super-gradient wind region appearing during intensification. Therefore, in this study, we discuss the factors from the viewpoint of eye wall (convection) and Convective Available Potential Energy, CAPE.

1. はじめに

台風は、先行研究によってその発生環境場の条件が議論されている。例えば、Gray (1968)では、 台風発生環境場の条件を6つに分けて提案してお り、そのうちの一つに「惑星渦度が大きい(すな わちコリオリカ (f)・緯度が大きい)」が挙げられ ている。Anthes (1982)、McBride (1995)でも、

「緯度 5°までの領域でクラス 3(最大風速 17m/s) の台風に発達するのは稀」とされている。ここで、 赤道から緯度 45°までを等惑星渦度間隔に 10 の緯 度帯に分け、IBTrACS-v03r10 を用いて台風強度

(最大風速 17m/s) に達した緯度の絶対値で台風 の個数を積算した結果を図1に示す。南緯 5°-北 緯 5°で熱帯低気圧が台風強度に達したのは 20 年 間で 10 個であり、先行研究と整合的で稀であると 言える。

図 1. 1991 年から 2010 年の緯度帯毎の台風発生数 (IBTrACS-v03r10)。赤道から緯度 45° までを等コリオリカ の間隔で 10 の緯度帯に分けて積算した。

そのような低緯度で発生した台風を事例とした 先行研究はいくつかある。例えば2001年に北緯 1.5°で発生した台風 Vamei は、Boruneo 渦との関 連から多く研究されている。しかし Chang et al. (2003)は、環境場(Cold surge)が大きく影響 している特殊な状況のため、赤道域で発生する台 風については他の事例の解析も必要性を示唆して いる。そこで吉岡 and 榎本 (2018) では、2016 年1月7日 18Z に北緯 4. 4°で発生したハリケーン PALI 対象に、領域モデル WRF-ARW v3 (Skamarock et al., 2008)を用いた数値実験を行った。計算初期 時刻をずらしながら、全球アンサンブルデータ NOAA's 2nd-generation global ensemble reforecast dataset (GEFSR2; Hamill et al., 2013) のダウンスケール実験を行った。その中か ら、最も予報成績の良かった(ベストトラックの 風速とダウンスケール実験の最大接線風速の平均 平方二乗誤差が最も小さい)メンバーが含まれる 初期時刻を対象に、渦の構造変化を解析した。そ の結果、ハリケーン発達時には下層の最大接線風 速半径付近に超傾度風(傾度風平衡を仮定した場 合の接線風速よりも実際の接線風速が大きい)領 域が現れる特徴が見られた。

本研究では、吉岡 and 榎本 (2018)の実験結果 で確認された PALI 発達時の超傾度風の特徴を、壁 雲の発達や対流有効位置エネルギー (CAPE)の視 点からより詳細に解析することを目指す。

2. 研究手法

本研究では、2016 年 1 月 7 日 18Z に北緯 4.4° で発生したハリケーン PALI を事例に、ダウンスケ ール実験を行い、その結果を解析した。実験設定 は、吉岡 and 榎本 (2018) と同様である。計算領 域と、Joint Typhoon Warning Center (JTWC) に よる、ハリケーン PALI のベストトラックを図 2

に、実験の主要な計算設定を表1に示した。

図 2. JTWC によるハリケーン PALI のベストトラック。赤線で台 風強度、黒実線で熱帯低気圧強度の期間、黒点線で赤道、 黒破線で日付変更線、黒枠でダウンスケール実験計算領域 を示す。

表 1. ダウンスケール実験設定	
モデル	WRF-ARW v3.6.1
水平格子サイズ	10km $ imes$ 10 km
水平格子数	250 × 250
鉛直格子数	40(下層を密に)
タイムステップ	30 秒
積雲対流	Kain-Fritch scheme
パラメタリゼーション	
計算初期時刻	2016年1月3日00Z
予報期間	8日間
アンサンブルメンバー数	11

3. 結果

ダウンスケール実験 11 メンバーとベストトラ ックのハリケーンの強度(地上 10m 最大風速)の 時系列を図3に示した。FT048 付近までは全ての メンバーで強度発達が見られないが、それ以降メ ンバーごとに発達の仕方や強度に大きな違いが見 られる。そのうち、おおよそベストトラックと同 様の時間変化が見られた「発達メンバー」と、FT108 を境にベストトラックのように発達しなかった 「非発達メンバー」に注目する。

図4にダウンスケール実験11メンバーのCAPE の消費量(ハリケーン中心から東西南北に250km の正方形領域の平均値の25時間移動平均値)を示 した。FT048からFT072までは非発達メンバーの CAPE 消費量が大きくなっているが、FT072以降 FT144まで発達メンバーのCAPE消費が維持されて いることが分かる。ここで発達メンバーと非発達 メンバーの壁雲(非断熱加熱)の水平構造の時間 変化を図5に示した。発達メンバーは、半径50km・ FT108からFT144に壁雲の発達が見られるのに対 し、非発達メンバーにはそれが見られない。これ は超傾度風の強弱とも対応している(図なし)。ハ リケーンの壁雲(対流)の活動活発化に伴う下層 水平収束の強化が、超傾度風(接線風速)の強化 を促していると考えられる。

図 5. ダウンスケール実験での壁雲の時間変化を示すホフメラ 一図。コンターで CAPE (JK⁻¹)、シェイドで非断熱加熱 (Khour⁻¹)、左図が発達メンバー、右図が非発達メンバーを 示す。

参考文献

- Gray, W. M., 1968: Global view of origin of tropical disturbance and storms. Mon. Wea. Rev., 96. 669-700.
- 吉岡大秋, 榎本剛, 2018: 低緯度におけるハリケー ン強化過程のダウンスケール実験, 京都大学 防災研究所年報, 第 61 号(B), pp380-386