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To better assess hillslope stability for landslide 

prediction, we would like to develop a three-

dimensional model for shallow groundwater flow in a 

surface soil layer on an irregular hillslope. In terms of 

the assumption of shallow groundwater flow, we 

derived a new and Boussinesq-type perturbation 

solution of hydraulic head as well as a depth-averaged 

equation of groundwater table evolution. For numerical 

solutions, we used the leading-order evolution equation 

having a strong advection term, a nonlinear diffusion 

term and a source term. To tackle efficient and accurate 

calculation efficiency, we proposed a new and high 

resolution Godunov-type finite volume scheme with 

specific treatments to the nonlinear diffusion term for 

assuring the property of numerically well-balancing. 

Some cases are conducted for verification of the new 

model we proposed. This work is supposed to provide 

a new three-dimensional theory of groundwater motion 

and a corresponding numerical model.  

 

Fundamental theory  

Governing equations  

We consider a thin and sloping aquifer consisting of 

isotropic and homogeneous porous medium, and the 

fluid in the pores is homogeneous and incompressible. 

The Cartesian coordinates of (ݔᇱ , ,ᇱݕ  ᇱ) is used. Theݖ

seepage velocity ࢛ᇱ = ,ᇱݑ) ,ᇱݒ  ᇱ) [m s-1] is expressedݓ

by the Darcy’s law  

ᇱ࢛  = −݇∇ᇱℎᇱ, (1) 

where ݇ is the hydraulic conductivity [m s-1], ∇ᇱ is 

the Laplacian operator, ℎᇱ is the hydraulic head [m],    

 ℎᇱ = ᇱ ⁄௪ߛ +  ᇱ, (2)ݖ

where ᇱ is the pore water pressure [Pa], ߛ௪  is the 

water specific weight [N m-3].  

For groundwater, the continuity equation reads  

 ∇ᇱ ∙ ᇱ࢛ = 0,  ܾᇱ < ݖ < ,ᇱݔ) ᇱ andߟ (ᇱݕ ∈ ࣞᇱ, (3) 

where ܾᇱ(ݔᇱ, (ᇱݕ  and ߟᇱ(ݔᇱ, ,ᇱݕ (ᇱݐ  denote the 

invariant bottom and phreatic surface, respectively, and 

ࣞᇱ is the horizontal boundary. At the bottom, the no-

slip condition reads  

ᇱݓ  = ᇱݑ డᇲ

డ௫ᇲ + ᇱݒ డᇲ

డ௬ᇲ,  on ݖᇱ = ܾᇱ. (4) 

At the phreatic surface, the kinematic boundary 

condition with a spatially-varying rainfall recharge 

ᇱݔ)ᇱܫ , ,ᇱݕ (ᇱݐ > 0 [m s-1] is imposed as  

ᇱݓ  = ௦ܵ
డఎᇲ

డ௧ᇲ + ᇱݑ డఎᇲ

డ௫ᇲ + ᇱݒ డఎᇲ

డ௬ᇲ − ᇱݖ ᇱ,  onܫ =  ᇱ, (5)ߟ

where ௦ܵ is the effective porosity [-]; the free-surface 

dynamic boundary condition with zero-pressure is 

ᇱ  = 0 and ℎᇱ = ᇱݖ ᇱ,  onߟ =  ᇱ.  (6)ߟ

 

Normalized governing equations  

All normalized variables are defined as  

 
,ݔ) (ݕ = ଵ


ᇱݔ) , ,(ᇱݕ ,ߟ) ܾ) = ଵ


,ᇱߟ) ܾᇱ),

 = ᇲ

ఊೢ ு
, ݐ = ௧ᇲ

ௌೞమ బ⁄ , ࢛ = ᇲ࢛

బ ⁄ , ℎ = ᇲ


.
  (7) 

With (7), the normalized hydraulic head reads  

 ℎ =  +  (8) .ݖ

Then, normalized governing equation and boundary 

conditions become  

 ߳ଶ∇ଶℎ + డమ
డ௭మ = 0,  ܾ < ݖ < ,ݔ) and ߟ (ݕ ∈ ࣞ, (9) 

  = 0 and ℎ = ݖ on  ,ߟ =  (10) ,ߟ



 డ
డ௭

= −߳ଶ ቀడఎ
డ௧

− ∇ℎ ∙ ߟ∇ − ݖ ቁ,  onߛ =  (11) ,ߟ

 డ
డ௭

= ߳ଶ∇ℎ ∙ ∇ܾ,  on ݖ = ܾ, (12) 

where the normalized horizontal Laplacian operator is 

(∙)ߘ  = ቀ డ∙
డ௫

, డ∙
డ௬

ቁ,  (13) 

and the normalized rainfall recharge and small 

shallowness parameter for a thin soil layer are   

ߛ  = ூᇲమ

బு
 and ߳ଶ = ቀ


ቁ

ଶ
≪ 1. (14) 

 

Perturbation solution 

The normalized governing equations, (9) to (12), form 

a perturbation problem. Using ߳ଶ ≪ 1  an infinite 

series of the hydraulic head is expanded as  

 ℎ = ℎ + ߳ଶℎଵ + ߳ସℎଶ + ⋯, (15) 

Applying the perturbation method to the governing 

equations, we obtained a new perturbation solution  

 
ℎ = ߟ + ߳ଶ[(ߟ − ߟ∇)(ݖ ∙ ∇ܾ − ܾ∇ଶߟ)

                             +భ
మ
ଶߟ) − ൧ߟଶ)∇ଶݖ + ࣩ(߳ସ), (16) 

regarding irregular bottom and rainfall recharge. 

Equation (16) shows that the leading-order solution ߟ 

is independent of ݖ. With (16), the velocities are  

 
,ݑ) (ݒ = −∇ℎ = ߟ∇− − ߳ଶ{∇ߟ∇)ߟ ∙ ∇ܾ)            

ߟ)ߟ∇+ − ܾ)∇ଶߟ + ߟ∇)∇ ∙ ∇ܾ − ܾ∇ଶℎ)     
+భ

మ
ଶߟ) − {ߟ∇ଶ)∇ଶݖ + ࣩ(߳ସ),                        

(17) 

 
ݓ = − డ

డ௭
                                                                  

= −߳ଶ[(ܾ − ߟଶߘ(ݖ − ߟߘ ∙ [ܾߘ + ࣩ(߳ସ).
 (18) 

The leading-order vertical velocity is zero, and this 

verifies the shallow flow assumption.  

 

Equation of phreatic surface evolution  

Applying the depth-averaging method to continuity (9) 

with other boundary conditions yields the equation of 

phreatic surface evolution as  

 డఎ
డ௧

= [∇ ∙ ߟ) − ߟ∇(ܾ + [ߛ + +ࣩ(߳ଶ). (19) 

Equation (19) is verified to be equal to the classical 

solutions (Parlange et al., 1984; Chen and Liu, 1995).  

Numerical scheme   

To find numerical solutions, we used the leading-order 

equation of groundwater depth evolution, as below  

 డு
డ௧

= ∇ ∙ ܪ)∇ܪ + ܾ) +  (20) ,ߛ

where ܪ = ߟ − ܾ is the total groundwater depth [m]. 

Equation (20) is a nonlinear advection-diffusion 

equation with a source term. To achieve efficient 

computation, an explicit scheme is required. With 

specific treatments for the nonlinear diffusion term and 

for assuring well-balancing property, a new and high 

resolution Godunov scheme (LeVeque, 2002; Busto et 

al., 2016) is proposed to numerically solve (20).  

 

Expected Results  

A new complete solution of groundwater motion in a 

sloping unconfined aquifer with a spatial-varying 

rainfall recharge has been derived. A new scheme for 

solving the equation of groundwater depth evolution is 

also proposed. Some cases with real three-dimensional 

topography will be conducted. This work can benefit 

efficient and accurate calculation of three-dimensional 

groundwater motion in a thin and unconfined sloping 

aquifer under any given rainfall.  
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