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A Three-Dimensional Model of Subsurface Flow in an Unconfined Surface Soil Layer on an

Irregular Hillslope

To better assess hillslope stability for landslide
prediction, we would like to develop a three-
dimensional model for shallow groundwater flow in a
surface soil layer on an irregular hillslope. In terms of
the assumption of shallow groundwater flow, we
derived a new and Boussinesq-type perturbation
solution of hydraulic head as well as a depth-averaged
equation of groundwater table evolution. For numerical
solutions, we used the leading-order evolution equation
having a strong advection term, a nonlinear diffusion
term and a source term. To tackle efficient and accurate
calculation efficiency, we proposed a new and high
resolution Godunov-type finite volume scheme with
specific treatments to the nonlinear diffusion term for
assuring the property of numerically well-balancing.
Some cases are conducted for verification of the new
model we proposed. This work is supposed to provide
a new three-dimensional theory of groundwater motion

and a corresponding numerical model.

Fundamental theory
Governing equations
We consider a thin and sloping aquifer consisting of
isotropic and homogeneous porous medium, and the
fluid in the pores is homogeneous and incompressible.
The Cartesian coordinates of (x’,y’,z") is used. The
seepage velocity u’ = (u/,v’,w') [ms]is expressed
by the Darcy’s law
u' = —k,V'n', (D

where k, is the hydraulic conductivity [m s'], V' is
the Laplacian operator, h’ is the hydraulic head [m],

h =p'/vw+2, 2
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where p' is the pore water pressure [Pa], ¥, is the
water specific weight [N m™].
For groundwater, the continuity equation reads
V-u' =0,
b'(x',y")

invariant bottom and phreatic surface, respectively, and

b'<z<n' and (x',y') €D’, (3)
where and n'(x',y’,t') denote the
D' is the horizontal boundary. At the bottom, the no-

slip condition reads

b’ b’
w=u—+v—
dox

5y OnZ = b'. 4)

At the phreatic surface, the kinematic boundary
condition with a spatially-varying rainfall recharge

I'(x',y',t") >0 [ms']is imposed as

an’ an’ an’
! ! ! !
w =5— u — vV—-—1

S ot’ T ox' T oy’ >

on z' =n",(5)

where S is the effective porosity [-]; the free-surface

dynamic boundary condition with zero-pressure is
p'=0and h' =7n', on z' =7 (6)

Normalized governing equations

All normalized variables are defined as

(y) =1y, (b) == @', b),

_ pl _ tl ul hl (7)
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With (7), the normalized hydraulic head reads
h=p+z ®)
Then, normalized governing equation and boundary

conditions become
2
€2V2h +ZTZ =0, b<z<n and (x,y) €D,9)

p=0and h=1n, on z=n, (10)



on 9
g=—62(a_Z_Vh'V”_y)’ on z=m, (11)

O _ e2yp - Vb,

P on z=b, (12)

where the normalized horizontal Laplacian operator is
a o

7O = (5.5, (13)

and the normalized rainfall recharge and small

shallowness parameter for a thin soil layer are

_r? 2 _ (D\?
y = and €2 = (Z) « 1. (14)

Perturbation solution
The normalized governing equations, (9) to (12), form
a perturbation problem. Using €2 «< 1 an infinite
series of the hydraulic head is expanded as
h=hy+€?h, +€*h, + -, (15)
Applying the perturbation method to the governing
equations, we obtained a new perturbation solution
h=n+¢e*[(n—2)(Vn-Vb—bV?n)
+(n? — 22)V%n] + 0(e), (16)
regarding irregular bottom and rainfall recharge.
Equation (16) shows that the leading-order solution 7
is independent of z. With (16), the velocities are
(u,v) = =Vh = —Vn — €2{Vn(Vn - Vb)
+Vn(n — b)V?n + V(Vn - Vb — bV?h) (17)
+x(m? — z*)VAVn} + 0(e*),

w=-2
0z (18)
= —€?[(b — 2)V?n — Vn-Vb] + O(e*).
The leading-order vertical velocity is zero, and this

verifies the shallow flow assumption.

Equation of phreatic surface evolution
Applying the depth-averaging method to continuity (9)
with other boundary conditions yields the equation of

phreatic surface evolution as

T =[V-(r—b)Vn+y]++0(eD.  (19)

Equation (19) is verified to be equal to the classical

solutions (Parlange et al., 1984; Chen and Liu, 1995).

Numerical scheme
To find numerical solutions, we used the leading-order

equation of groundwater depth evolution, as below

2 =V-HV(H+b)+y, (20)

where H =1 — b is the total groundwater depth [m].
Equation (20) is a nonlinear advection-diffusion
equation with a source term. To achieve efficient
computation, an explicit scheme is required. With
specific treatments for the nonlinear diffusion term and
for assuring well-balancing property, a new and high

resolution Godunov scheme (LeVeque, 2002; Busto et

al., 2016) is proposed to numerically solve (20).

Expected Results

A new complete solution of groundwater motion in a
sloping unconfined aquifer with a spatial-varying
rainfall recharge has been derived. A new scheme for
solving the equation of groundwater depth evolution is
also proposed. Some cases with real three-dimensional
topography will be conducted. This work can benefit
efficient and accurate calculation of three-dimensional
groundwater motion in a thin and unconfined sloping

aquifer under any given rainfall.
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