表層崩壊から土石流までを考慮した一連の土砂流出解析モデル A series of numerical analysis on debris flows associated with shallow landslides

○孝子綸図・山野井一輝・和田孝志・堤大三・藤田正治
○Rinto KOSHI, Kazuki YAMANOI, Takashi WADA, Daizo TSUTSUMI, Masaharu FUJITA

A large scale of landslide and following debris flow occurred on $15^{th} \sim 16^{th}$ Oct. 2013 in the west part of Izuoshima island. The disaster caused heavy damage to people, facilities and so on. In order to develop a method to predict both timing and scale of them, we developed a simulation model connected the rainfall runoff model, slope stability model, and the debris flow model on the stream-tube method of topographical division. As a result of application, the calculated area and timing of landslide, in addition the calculated volume of debris flow was corresponded to the observed data. (99 words).

1. はじめに

豪雨に起因する表層崩壊は土石流等を通じて人的 被害を引き起こすだけでなく、下流に供給された崩 壊土砂による河床の上昇や河川構造物の被害を引き 起こす.例えば、平成25年10月15~16日に伊豆大 島で発生した土砂災害では、大金沢等の流域で複数 の表層崩壊が面的に発生し、それに起因する土石 流・泥流により広い範囲で人的・物的な被害が生じ た¹⁾.このような土砂災害に備えるためには、警戒 避難を中心としたソフト対策が重要であり、降雨を 元に斜面崩壊の場所と規模・およびそれに伴う土石 流まで統合的に評価できればハザードマップや避難 計画の立案に役立つ.そこで本研究では、広範囲に 適用できる統合的土砂災害シミュレーションモデル の構築を目的とする.

本研究では、前述した伊豆大島元町地区大金沢流 域(図1)を対象地域とした.図1における黄色のラ インは斜面崩壊と土石流による地表面攪乱エリア を示し、白いラインは後述する手法を用いた地形分 割結果を示している.斜面崩壊発生場の勾配は30~ 40°であり、表層は層厚1mのテフラ層である.

図1 対象流域における地形分割

2. 数値モデル

解析は,**TOPOTUBE**²⁾を用いた地形分割により, 降雨流出解析・斜面安定解析を連続させて行う.

TOPOTUBE 法は等高線とそれらを横切る流線に より地形を分割する手法である.流線に囲まれた分 割要素群は,上流から下流までのひとつなぎの斜面 (以降 TUBE と呼ぶ)として捉えることができ,同 時にこの斜面は降雨浸透水の流出経路を再現してい る.降雨流出は Diffusion Wave 法を用い,表面流を Manning 則,中間流を Darcy 則により解析した.次 に,得られた水深を入力値として,簡易 Janbu 法に よる斜面安定解析と動的計画法の組み合わせによる 最小安全率断面の探査を行い,崩壊個所,崩壊土砂 量,崩壊タイミング得た.これらを入力値として, 高橋ら³⁾の手法を基に一次元土石流解析を行う.入 力ハイドログラフは,算定された各崩壊の土砂量・ 崩壊長・斜面傾斜角の関数で導かれる三角形ハイド ログラフとした.以下に解析の流れを示す.

図2 解析フローチャート

3. 適用結果

計算条件として表1に示す諸量と気象庁大島観測 所で観測された降雨(図5上部参照)を与えた.

最大降雨強度観測時の表層崩壊予測結果を図3に 示す.斜面崩壊判定箇所は地表攪乱エリアの源頭 部をおおよそ表現できた.

表1 解析条件			
土層厚さ[m]	1.0	初期水深[m]	0.2
土粒子密度	2.65	間隙流体	1.0
$[g/cm^3]$		密度[g/cm ³]	
平均粒径[mm]	5.0	間隙率	0.56
透水係数[cm/s]	1.0×10 ⁻²	Manning	0.07
		粗度係数	
粘着力[kN/m ²]	5.0	内部摩擦角[°]	20.0
侵食速度係数	0.0007	堆積速度係数	0.1

図3 表層崩壊予測結果

得られた表層崩壊に関する諸量と降雨流出解析に よる表面流を入力値として図4に示すように地形分 割上のTUBEにおいて一次元土石流解析を行なった. 図4上部は最大降雨強度に達する前の時刻における 結果を示している.おおよその崩壊土砂(土砂濃度 c=0.44)は崩壊発生部直下,もしくは斜面勾配変化部 に堆積していることがわかる.図4下部には降雨終 了後の結果を示す.降雨による表面流の発生により, 堆積土砂の二次的侵食が表現された.図5には流域 右支川下流部(図4赤色丸印)における土石流流量 を示す.崩壊発生時刻が長時間にわたり分布してい るため各流量ピーク値は小さいが,積算流出流量は 約220,000[m³]を得た.東京都建設局によると大金沢 流域における土石流流下流量は約165,000[m³]⁴⁾と見 積もられており,解析流量に近い値が示された.

4.まとめ

TOPOTUBE法, Diffusion Wave法, 簡易 Janbu法, 動的計画法,高橋モデルによる土石流解析を統合し, 流域単位における土砂災害シミュレーションモデル を構築した.伊豆大島大金沢流域へのモデル適応結 果は災害調査結果と比較し,再現度はおおむね良好 であった.今後は他の流域にモデルを適用し,解析 値の妥当性の検証を行う.

図5 流域右支川における土石流流量

参考文献

- 石川ら:2013年10月16日台風26号による伊豆大島 土砂災害,砂防学会誌, Vol.66, No.5, pp.61-72, 2014
- Wu 5: A distributed slope stability model for steep forested basins, Water Resources Research, Vol.31, No.8, p.2097-2110, Aug, 1995.
- 高橋ら:山岳流域における土砂流出の予測,水 工論文集,第44巻,pp.717-722,2000
- 伊豆大島土砂災害対策検討委員会:伊豆大島土 砂災害対策検討委員会報告書, p.33,2014