積雪期の地すべり地における強風時の融雪特性 Snow melting properties during strong winds on a snow covered landslide

 ○阿部和時・大澤光・佐藤北斗・柴崎達也・岡本隆・阿部修・松浦純生
○Kazutoki ABE, Hikaru OSAWA, Hokuto SATO, Tatsuya SHIBASAKI, Takashi OKAMOTO, Osamu ABE, Sumio MATSUURA

We observed a foehn event on a snow-covered mountain slope. The foehn winds, which were characterized by a predominant wind direction, blew strongly for 24 hours and had relatively high air temperatures. We calculated heat fluxes under strong winds using a heat balance method. The calculated values using the method were found to be an underestimation compared to values obtained from a calculation of a snow depth reduction and snow density. This is presumably due to the underestimated bulk transfer coefficients used in the calculation.

1. はじめに

日本海側の北陸以北の山間地では冬季の降雪に より広く豪雪地帯となる.このような場において フェーン現象による暖かい強風は積雪表面の熱交 換を促進させ,融雪を加速させる働きがある.雪 面での急激な融雪に伴う水分は地表面へ到達し, 地中へ浸潤することで間隙水圧を上昇させ斜面変 動のリスクを上昇させる.ここに 2015 年春に観測 された特徴的なフェーン現象を報告する.

2. 対象地の概要

新潟県上越市安塚区の山間地に位置する地すべ りを対象地とした.気象観測露場は地すべり地か ら約 50m離れた不動域にあり,標高 567m であり季 節的に最大積雪深 5m を記録する豪雪地帯である.

3. 観測方法

本研究では対象地の気象観測露場で観測された データを用いた.気象観測項目は,降水量,積雪 深,積雪水量,地表面到達水量(MR: Meltwater and/or Rainfall),気温,相対湿度,短波放射量, 長波放射量,風向,風速,地温が10分間隔にて自 動観測されている.また,雪面での融雪水量を予 測するため,積雪深と積雪密度から計算したもの, および熱収支法を用いて計算をおこなった.2/2 に現地にて積雪密度を実測しており,その値を参 考に450cm以上を新雪として密度0.15とし,それ 以下を密度0.3として積雪深減少量より計算した.

4. 結果と考察

図に 2015/2/21²2/24 までの気象観測結果と計 算融雪水量を示す.図から 2/22,0時から卓越した 風向で乾燥した暖かい風が吹き,フェーン現象が 起こっていることが推察される.このような時に は雪面にて大量の融雪が起こることが予想される が,MRの値は積雪深の減少量に比べて非常に少な い.雪面での融雪水量を積雪深と積雪密度から計 算した値と熱収支法による計算結果では,後者が 少なくなる結果となった.積雪深と積雪密度から 計算した値は経験則的な算出方法ではあるが妥当 な値と言える.熱収支法が過小評価となった理由 としてバルク係数の設定に水平一様な雪面での値 を用いたことが原因と考えられる.

