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What is “rapid response”?
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John Elliott Talk
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What is “rapid response”?

This talk 1.

Continuous GPS 3.

Earthquake Early 4.
Warning >.
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Tsunami Warning 7.
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Outline

Why do we need geodesy for EEW?
Previous Work

Real-time PPP processing of GPS

(+ Tetsuya Iwabuchi’s talk)

Rapid, simple modelling

Results from 2011 Tohoku-OKki
Earthquake

Results from 2003 Tokachi-Oki
Earthquake

Summary and Recommendations
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Earthquake Early Warning
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* The earthquake and tsunami warnings issued by JMA for the Tohoku-
Oki earthquake saved thousands of lives.

* But the warning significantly underestimated the earthquake
magnitude.




Saturation of magnitude estimates
from seismology for large earthquakes
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Previous work promoting use of GPS
for Earthquake or Tsunami Warning
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East (mm)

Previous work promoting use of GPS
for Earthquake or Tsunami Warning

GPS SAMP

Proposed methods involved waiting for static displacements
Tested with sparse, far-field data

tsunami front,
hrs since quake
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Real-time Precise
Point Positioning

2011 Tohoku-Oki event is best recorded great
earthquake in history - deformation recorded
on ~1200 GEONET cGPS sites.

We process in real-time mode using PPP with
the RTNet software (Iwabuchi talk).

Loose kinematic constraints (100 m/s) allow
recovery of motions.

Clock errors and orbits correction using
VERIPQOS service.

Data transmission and processing would take
~1-2 seconds.

1 sigma errors ~2.7/4.2/12.2 cm in
east/north/up components.
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Displacement History in Tohoku-Oki Earthquake
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Slip Distributions from Geodesy
(+seismology + tsunami modelling +...)

P ————————————————————— N 150
. . 05 P 125 50 ) / éf
41 6000 -4000 2000 O 2000 Momentrete funclion | f i P ";gl:':, w0 E ‘ : E
s
' I 2 o2 |\ NS
4 g 4 2 | ¥
£ N o 10 A
p \
a0 50];«13(5?0 ‘ E.Ll US:ray — g )
i £ | §'
K 3|
! B
| i i
50 o 5
a0 AV
30 g & ] ?
el = «
10 o Mo S
o > &

\ 0 N 39#

l' l

\ |

) 97's
= ; oy NE :ﬁ\& f
! \I B
&
%
e 100 | o N Vertical displacement on land (cm)
Rl ' i 140°E 141E 142°E 149E 144E 145E 146
34° L] I - .
- 7o oo w Yagi and Fukahata, 2011 Hooper et al., 2012

Simons et al, 2011

Lay et al, 2011

These slip models are important for understanding

earthquake physics and future hazard.
There is no need for this complexity for EEW.
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~ Simple slip inversion
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* Assume instantaneous displacements are final static displacements
e Uniform slip on 100 km sections of pre-defined subduction interface.
* No resolution from geodesy near the trench, so fix upper limit of faulting.
* Allow depth extent to vary (non-linear inversion).
* Use subset of 10 GPS sites; 8 cm displacement “trigger”.
* Inversion runs in less than a second on a single processor.
Wright et al, GRL 2012
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Influence of patch sizes
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* 50 km patches are noisier than 100 km station spacing

e 200 km patches less sensitive to station noise (fewer false

alarms) but later detection.
Wright et al, GRL 2012



How many GPS sites are needed?
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Station density (sites/100 km)
e GEONET allows us to test different station

configurations

* For each station density, we looked at 50 randomly
chosen configurations.

 Fewer than 1 site / 100 km needed, but more sites

ensures robustness against station failures or outliers.
Wright et al, GRL 2012



Can this be applied to Tsunami Forecast?
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* Uncertainty in wave heights from
simple models.

* Simple inversion scheme valuable for
first rapid warning (T + 3 mins)

* More detailed inversions take longer
but could refine forecasts for later
times.
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Timing of GPS EEW

e Seismic EEW are faster

* Displacements reach
peak with surface
waves not P-waves
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Unresolved issues

Fault geometry — what happens if the quake is
not on the expected rupture plane (e.g. outer
rise earthquakes)?

What about earthquakes on unknown faults?

Do these methods work with smaller
earthquakes?

Can seismic and geodetic methods be
combined for an optimum system?



2008 Iwate-Miyagi earthuake
(M, ~6.8; Shallow Thrust Fault)
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Conclusions & Recommendations

Geodesy has an important role in the response
phase to earthquakes, on time scales from
minutes to years.

The exceptional geodetic instrumentation in
Japan has enabled tests of earthquake early
warning methods that use continuous GPS.

GPS magnitude estimates do not saturate.

GPS can and should be processed in real time;
results could be integrated with the existing
seismic EEW system.
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SEM

Green’s function computed
directly in the time domain

PROPAGATOR MATRIX
METHOD

Computation of the transfer
function in the frequency
domain

Back to time domain by
inverse FFT
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Comparison of
temperature change in urban areas
between different geographical conditions

Graduate School of Science, Kyoto Univ.
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Problems caused by urban warming

Natural disasters
v Heavy rain
v Severe floods

Damage on health
v Heat stress / Heat stroke
v Disturbance in sleep
v Air pollution etc...

Other
v Increase of energy consumption
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70% of population of the world will
live in urban areas in 2050.
The present problems will grow and
influence the lives of many people.
NRI NEWS




Measurement urban warming

Heat island intensity: A — Torban — LS

Hypothesis

v NOT urbanized and natural climate in rural sites

v Same geography (topography, water bodies, ..)
( Karl et al. 1988, Park et als 1974 SRt jisc Sl e
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(Geographical effect
One of the main difficulties to estimate urban warming is
the geographical setting.

The magnitude of heat island may depend more on the
local terrain than on the urban complex.
( Chandler 1964, Landsberg 1981 )

Individuality of urban climate

Urban factors Geographical factors
Land-use change Terrain
High buildings Relief

Anthropogenic heat Distance from coasts

Oke 1973
Goldreich 1984




Purpose

Comparing the geographical effects on urban warming has
been insufficient, and the magnitude of the effect is unclear.

To reveal the difference of geographical effects, relationship
between the temperature rising rate and urban surface
coverage were compared between different geographical

conditions.
Coast II
Inland II

Basin




Data and Methods

Temperature rising rate

Data Observation data by the Japan Meteorological Agency

Methods | Trend estimated by principal component analysis

Urban surface coverage

Data Digital national land information

> exp[—(ry/r)*]u(g)A
Methods | Coverage index: U(r) = 2 i g

Tr2

Park et al. 1994
Fujibe 2009




(Geographical conditions
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surrounded by mountains
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situated more than 20 km
from a coastline

SIS

‘ Coast
situated within 20 km
of a coastline
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If the sites are occupied by the same area of urban
surface, the temperature rises higher at inland
sites than at coastal sites.

Mean Temp.
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1 Local circulation may
== 1 influence coastal sites.

1 Is the distance from the coast

an important factor?

Correlation between the rising rate and the distance

Correlation was the strongest for the sites
within /7 km of the coast.

Mean Temp.
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coastal sites
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Conclusion

To reveal the difference of geographical effects, relationship
between the temperature rising rate and urban surface coverage
were compared between different geographical conditions.

v Significant positive correlations were shown for
inland and coastal sites. The gradient is higher for
the inlands than coasts.

v The sites situated within 7 km of the coast, could be
influenced by the air over the water to suppress the
temperature rise.

v The sites situated more than 7 km, are considered
to have geographical features similar to those of
the inlands.




Future plans

Represent urban climate under

various geographical conditions
using a regional atmospheric model Result example

Daily variation of surface air temperature

v Reveal the mechanisms

v Make general expression
for urban climate with geographical conditions
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